• 제목/요약/키워드: Yeast one-hybrid

검색결과 42건 처리시간 0.028초

OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis

  • Jin, Xiao-Fen;Xiong, Ai-Sheng;Peng, Ri-He;Liu, Jin-Ge;Gao, Feng;Chen, Jian-Min;Yao, Quan-Hong
    • BMB Reports
    • /
    • 제43권1호
    • /
    • pp.34-39
    • /
    • 2010
  • Expression patterns of OsAREB1 revealed that expression of OsAREB1 gene can be induced by ABA, PEG and heat. Yeast one-hybrid assay demonstrated it can bind to ABA-responsive element (ABRE), which was found in most stress-induced genes. Transgenic Arabidopsis over-expressing OsAREB1 had different responses to ABA and glucose compared to wild-type plants, which suggest OsAREB1 might have a crucial role in these two signaling pathways. Further analysis indicate that OsAREB1 have multiple functions in Arabidopsis. First, OsAREB1 transgenic plants had higher resistance to drought and heat, and OsAREB1 up-regulated the ABA/stress related gene such as RD29A and RD29B. Second, it delayed plant flowering time by down-regulating the expression of flowering-related genes, such as FT, SOC1, LFY and AP1. Due to the dates, OsAREB1 may function as a positive regulator in drought/heat stresses response, but a negative regulator in flowering time in Arabidopsis.

Identification and functional analysis of COLD-signaling-related genes in Panax ginseng

  • Jeongeui Hong;Hojin Ryu
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.225-231
    • /
    • 2023
  • Cold stress is one of the most vulnerable environmental stresses that affect plant growth and crop yields. With the recent advancements in genetic approaches using Arabidopsis and other model systems, genes involved in cold-stress response have been identified and the key cold signaling factors have been characterized. Exposure to low-temperature stress triggers the activation of a set of genes known as cold regulatory (COR) genes. This activation process plays a crucial role in enhancing the resistance of plants to cold and freezing stress. The inducer of the C-repeatbinding factor (CBF) expression 1-CBF module (ICE1-CBF module) is a key cold signaling pathway regulator that enhances the expression of downstream COR genes; however, this signaling module in Panax ginseng remains elusive. Here, we identified cold-signaling-related genes, PgCBF1, PgCBF3, and PgICE1 and conducted functional genomic analysis with a heterologous system. We confirmed that the overexpression of cold- PgCBF3 in the cbf1/2/3 triple Arabidopsis mutant compensated for the cold stress-induced deficiency of COR15A and salt-stress tolerance. In addition, nuclearlocalized PgICE1 has evolutionarily conserved phosphorylation sites that are modulated by brassinsteroid insensitive 2 (PgBIN2) and sucrose non-fermenting 1 (SNF1)-related protein kinase 3 (PgSnRK3), with which it physically interacted in a yeast two-hybrid assay. Overall, our data reveal that the regulators identified in our study, PgICE1 and PgCBFs, are evolutionarily conserved in the P. ginseng genome and are functionally involved in cold and abiotic stress responses.

Muskelin과 multi-PDZ domain protein 1 (MUPP1) 단백질의 PDZ 도메인을 통한 결합 (Muskelin Interacts with Multi-PDZ Domain Protein 1 (MUPP1) through the PDZ Domain)

  • 장원희;정영주;최선희;이원희;김무성;김상진;엄상화;문일수;석대현
    • 생명과학회지
    • /
    • 제25권5호
    • /
    • pp.594-600
    • /
    • 2015
  • 단백질-단백질 결합은 다양한 세포내 반응 조절에서 중요한 역할을 한다. Postsynaptic density-95/disks large/ zonula occludens-1 (PDZ) 도메인은 널리 알려진 단백질-단백질 결합 매개 도메인 중 하나이다. PDZ 도메인은 결합 단백질의 카르복실(C)-말단의 특정 motif와 결합한다. Multi-PDZ domain protein 1 (MUPP1)은 13개 PDZ 도메인을 가지는 단백질로서 다양한 구조단백질 및 신호단백질에 대한 scaffold로 작용한다고 알려져 있지만 MUPP1의 세포 내 기능은 아직 명확히 밝혀지지 않았다. 본 연구에서 MUPP1의 PDZ 도메인과 결합하는 단백질을 규명하기 위하여 효모 two-hybrid 방법을 이용하였고 muskelin이 MUPP1과 결합하는 것을 확인하였다. Muskelin은 GABAA 수용체(GABAAR)의 α1 subunit와 결합하며 수용체의 endocytosis와 분해에 관여하는 것으로 알려져 있다. Muskelin은 MUPP1의 3번째 PDZ 도메인과 결합하지만, 다른 PDZ 도메인과는 결합하지 않았다. 또한 MUPP1과의 결합에 muskelin의 C-말단부위가 필수적임을 효모 two-hybrid 방법으로 확인하였다. HEK-293T 세포에 MUPP1과 muskelin을 동시에 발현하여 면역 침강한 결과 두 단백질은 같이 면역 침강하였다. 반면에 C-말단 결손 muskelin은 MUPP1과 같이 면역 침강하지 않았다. 또한 muskelin과 MUPP1은 세포내의 같은 위치에서 발현하였다. 이러한 결과들은, muskelin과의 결합을 통해, MUPP1 혹은 MUPP1과 결합하는 단백질이 GABAAR의 세포내이동과 회전(turnover)을 조절할 가능성을 시사한다.

Kinesin superfamily-associated protein 3 (KAP3)를 통한 HS-1-associated protein X-1 (HAX-1)과 Kinesin-II의 결합 (Kinesin Superfamily-associated Protein 3 (KAP3) Mediates the Interaction between Kinesin-II Motor Subunits and HS-1-associated Protein X-1 (HAX-1) through Direct Binding)

  • 장원희;석대현
    • 생명과학회지
    • /
    • 제23권8호
    • /
    • pp.978-983
    • /
    • 2013
  • Kinesin-II는 다양한 운반체들을 미세소관을 따라 운반하는 motor 단백질의 하나이다. Kinesin-II는 두 개의 motor 단백질 KIF3A와 KIF3B, 그리고 motor 단백질의 말단에 결합하는 kinesin superfamily-associated protein 3 (KAP3)로 구성되어 있다. KAP3는 Kinesin-II의 기능에 중요한 역할을 하는 것으로 알려져 있으나 명확한 기능은 아직 밝혀지지 않았다. 본 연구에서 KAP3와 결합하는 단백질을 분리하기 위하여 효모 two-hybrid system을 사용하여 탐색한 결과 HS-1-associated protein X-1 (HAX-1)을 분리하였다. KAP3은 HAX-1의 C-말단 부위와 결합하며, HAX-1은 KAP3의 C-말단부위와 결합함을 효모 two-hybrid assay로 확인하였다. 그러나, HAX-1는 KIF3A, KIF3B, KIF5B, 그리고 kinesin light chain (KLC)과는 결합하지 않았다. KAP3와 HAX-1의 단백질 결합은 glutathione S-transferase (GST) pull-down assay와 공동면역침강으로 추가 확인하였다. 생쥐의 뇌 파쇄액을 HAX-1 항체와 KIF3A 항체로 면역침강을 행한 결과 Kinesin-II의 구성단백질인 KIF3B와 KAP3가 같이 침강하였다. 이러한 결과들은 KAP3가 Kinesin-II와 HAX-1의 결합을 매개한다는 것을 시사한다.

A LysM Domain-Containing Protein LtLysM1 Is Important for Vegetative Growth and Pathogenesis in Woody Plant Pathogen Lasiodiplodia theobromae

  • Harishchandra, Dulanjalee Lakmali;Zhang, Wei;Li, Xinghong;Chethana, Kandawatte Wedaralalage Thilini;Hyde, Kevin David;Brooks, Siraprapa;Yan, Jiye;Peng, Junbo
    • The Plant Pathology Journal
    • /
    • 제36권4호
    • /
    • pp.323-334
    • /
    • 2020
  • Lysin motif (LysM) proteins are reported to be necessary for the virulence and immune response suppression in many herbaceous plant pathogens, while far less is documented in woody plant pathogens. In this study, we preliminarily characterized the molecular function of a LysM protein LtLysM1 in woody plant pathogen Lasiodiplodia theobromae. Transcriptional profiles revealed that LtLysM1 is highly expressed at infectious stages, especially at 36 and 48 hours post inoculation. Amino acid sequence analyses revealed that LtLysM1 was a putative glycoprotein with 10 predicted N-glycosylation sites and one LysM domain. Pathogenicity tests showed that overexpressed transformants of LtLysM1 displayed increased virulence on grapevine shoots in comparison with that of wild type CSS-01s, and RNAi transformants of LtLysM1 exhibited significantly decreased lesion length when compared with that of wild type CSS-01s. Moreover, LtLysM1 was confirmed to be a secreted protein by a yeast signal peptide trap assay. Transient expression in Nicotiana benthamiana together with protein immunoblotting confirmed that LtLysM1 was an N-glycosylated protein. In contrast to previously reported LysM protein Slp1 and OsCEBiP, LtLysM1 molecule did not interact with itself based on yeast two hybrid and co-immunoprecipitation assays. These results indicate that LtLysM1 is a secreted protein and functions as a critical virulence factor during the disease symptom development in woody plants.

Gene annotation by the "interactome"analysis in KEGG

  • Kanehisa, Minoru
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2000년도 International Symposium on Bioinformatics
    • /
    • pp.56-58
    • /
    • 2000
  • Post-genomics may be defined in different ways depending on how one views the challenges after the genome. A popular view is to follow the concept of the central dogma in molecular biology, namely from genome to transcriptome to proteome. Projects are going on to analyze gene expression profiles both at the mRNA and protein levels and to catalog protein 3D structure families, which will no doubt help the understanding of information in the genome. However complete, such catalogs of genes, RNAs, and proteins only tell us about the building blocks of life. They do not tell us much about the wiring (interaction) of building blocks, which is essential for uncovering systemic functional behaviors of the cell or the organism. Thus, an alternative view of post-genomics is to go up from the molecular level to the cellular level, and to understand, what I call, the "interactome"or a complete picture of molecular interactions in the cell. KEGG (http://www.genome.ad.jp/kegg/) is our attempt to computerize current knowledge on various cellular processes as a collection of "generalized"protein-protein interaction networks, to develop new graph-based algorithms for predicting such networks from the genome information, and to actually reconstruct the interactomes for all the completely sequenced genomes and some partial genomes. During the reconstruction process, it becomes readily apparent that certain pathways and molecular complexes are present or absent in each organism, indicating modular structures of the interactome. In addition, the reconstruction uncovers missing components in an otherwise complete pathway or complex, which may result from misannotation of the genome or misrepresentation of the KEGG pathway. When combined with additional experimental data on protein-protein interactions, such as by yeast two-hybrid systems, the reconstruction possibly uncovers unknown partners for a particular pathway or complex. Thus, the reconstruction is tightly coupled with the annotation of individual genes, which is maintained in the GENES database in KEGG. We are also trying to expand our literature surrey to include in the GENES database most up-to-date information about gene functions.

  • PDF

효모 Phaffia rhodozyma의 융합체와 Carotenoid 생성 (Fusion Hybrid and Carotenoid Formation from the Yeast, Phaffia rhodozyma)

  • 장기명;김문휘;송명희;김상문;전순배
    • 한국균학회지
    • /
    • 제21권1호
    • /
    • pp.9-15
    • /
    • 1993
  • Astaxanthin을 생산하는 효모 Phaffia rhodozyma로 부터 제조된 상보적 돌연변이 균주사이의 융합체에 대한 carotenoid 함량 및 성분을 분석하였으며, 몇가지 화학첨가물에 의한 이들의 색소 증진 효과를 조사하였다. 핵 융합이 확인된 융합체들은 완전배지에서 1년 또는 그 이상 계대 후에도 매우 안정 하였다. 그리고 이들의 astaxanthin 함량은 야생형 모균주의 그것에 비해 약 $2.0{\sim}3.0$배 이었다. 또한 화학첨가물(malt extract, abscisic acid, gibberellic acid, riboflavin)에 의한 색소 증진 효과는 l% malt extract와 1 mM abscisic acid 첨가시 대조구에 비교해 총 caretenoid 함량이 35%와 11%가 각각 증진되었고, 이와 반대로 5 mM gibberellic acid와 0.1 mM riboflavin첨가시 19%와 12%가 각각 감소되었다.

  • PDF

Effects of the Heptasequence SPTSPTY of Rat Nuclear Factor 1-A on Interactions between the C-Terminal Regions of Mammalian Nuclear Factor 1 Proteins

  • Hwang, Jung-Su;Kim, Ji-Young
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.519-524
    • /
    • 2000
  • NF1 proteins are a family of DNA binding proteins which consist of two separate domains, N-terminal DNA binding domain and C-terminal transcription activation domain. The N-terminal 220 amino acids are highly conserved and are also known to mediate dimerization of NF1 proteins. The C-terminal regions of different type of NF1 proteins are heterogeneous and responsible for transcriptional activation. In this study, we tested the interaction between different domains of rat NF1-A protein by yeast two hybrid analysis and observed the interaction between C-terminal regions of NF1-A which do not contain the N-terminal dimerization domain. Our results showed that the C-terminal region of rat NF1-A between residues 231 and 509 strongly interacted not only with itself, but also with human NF1/CTF1 which is a different type of NF1. When the C-terminal region was divided into two fragments, one from residue 231 to 447 and the other from 448 to 509, the two fragments were able to interact with the C-terminal region of NF1-A significantly. This indicates that both fragments contain independent interaction domains. Analysis of the interactions with alanine substituted fragments showed that substitutions of the heptasequence, SPTSPTY of NF1-A, affected interaction between NF1 proteins. Our results strongly suggest that C-terminal regions may also be important for the formation of homo- and heterodimers in addition to the N-terminal dimerization domain. Also, the heptasequence motif may play some roles in dimer formation.

  • PDF

Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis

  • Zhang, Yang;Chen, Chen;Jin, Xiao-Fen;Xiong, Ai-Sheng;Peng, Ri-He;Hong, Yi-Huan;Yao, Quan-Hong;Chen, Jian-Min
    • BMB Reports
    • /
    • 제42권8호
    • /
    • pp.486-492
    • /
    • 2009
  • OsDREB1D, a special DREB (dehydration responsive element binding protein) homologous gene, whose transcripts cannot be detected in rice (Oryza sativa L), either with or without stress treatments, was amplified from the rice genome DNA. The yeast one-hybrid assay revealed that OsDREB1D was able to form a complex with the dehydration responsive element/C-repeat motif. It can also bind with a sequence of LTRE (low temperature responsive element). To analyze the function of OsDREB1D, the gene was transformed and over-expressed in Arabidopsis thaliana cv. Columbia. Results indicated that the over-expression of OsDREB1D conferred cold and high-salt tolerance in transgenic plants, and that transgenic plants were also insensitive to ABA (abscisic acid). From these data, we deduced that this OsDREB1D gene functions similarly as other DREB transcription factors. The expression of OsDREB1D in rice may be controlled by a special mechanism for the redundancy of function.

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha;Dangol, Sarmina;Chen, Yafei;Choi, Jihyun;Cho, Yoon-Seong;Lee, Jea-Eun;Choi, Mi-Ok;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.426-438
    • /
    • 2016
  • Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.