• 제목/요약/키워드: Yeast Hansenula polymorpha

검색결과 20건 처리시간 0.018초

Hansenula polymorpha와 Pichia pastoris의 비교를 통한 회분식 배양에서의 효과적인 재조합단백질 발현방법에 관한 연구 (The Study on the Effective Expression Strategy for Recombinant Protein Production with Pichia pastoris and Hansenula polymorpha)

  • 강환구;김재호;전희진
    • KSBB Journal
    • /
    • 제14권4호
    • /
    • pp.482-489
    • /
    • 1999
  • As host for the production of eucaryotic heterologous proteins, methylotrophic yeast Pichia pastoris and Hansenula polymorpha are the most highly developed of a small group of alternative yeast species chosen for their perceived advantages. This paper describes the method to enhance the recombinant protein productivity with P. pastoris and H. Plymorpha. In these experiments, the effects of methanol induction timing, induction method, pH, culture temperature and kinds of nitrogen sources on foreign protein production were tested with P. pastoris and compared with H. polymorpha.. In addition, optimum methanol concentration as inducer and the effects of carbon sources on AOX1 or MOX promoter repression and secretion efficiency were also studied in both cases.

  • PDF

메나놀 자화 효모 Hansenula polymorpha를 이용한 재조합 인체 표피 성장인자 유전자의 발현 및 분비 (Gene Expression and Secretion of Human Epidermal Growth Factor in a Methylotrophic Yeast Hansenula polymorpha)

  • 오용익;손정훈;최의성;김희철;이상기
    • 한국미생물·생명공학회지
    • /
    • 제22권5호
    • /
    • pp.477-484
    • /
    • 1994
  • Using a methylotrophic yeast Hansenula polymorpha, a heterologous gene expression and secretion system was developed for the production of hEGF(human Epidermal Growth Factor) which has been shown to promote epithelial cell proliferation and to inhibit gastric acid secretion. The hEGF gene was chemically synthesized according to the preferred codon usage in H. polymor- pha and expressed under the control of the strong and inducible methanol oxidase(MOX) promoter. The mating factor $\alpha$ pre-pro leader sequence of Saccharomyces cerevisiae was employed for hEGF to be secreted into the extracellular medium. This expression cassette was stably integrated into the host chromosomal DNA. Mature hEGF was efficiently expressed and secreted into the extracel- lular medium. About 24 mg/l of hEGF was detected in the cuture supernatant of a transformant with pA-EGF3 under the suboptimal culture conditions.

  • PDF

Heterologous Gene Expression and Secretion of the Anticoagulant Hirudin in a Methylotrophic Yeast Hansenula polymorpha

  • Sohn, Jung-Hoon;Michael-Yu-Beburov;Choi, Eui-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권2호
    • /
    • pp.65-72
    • /
    • 1993
  • A heterologous gene expression and secretion system using a methylotrophic yeast, Hansenula polymorpha was developed for the production of anticoagulant hirudin. Hirudin gene was expressed under the control of a strong and inducible methanol oxidase (MOX or AOX) promoter. The mating factor a pre-pro leader sequence of Saccharomyces cerevisiae was employed for hirudin to be secreted into the extracellular medium. Hirudin expression cassette was introduced into three strains of H. polymorpha, A16, HPBl and DLl which have different genetic backgrounds. This expression cassette was stably integrated into the host chromosomal DNA. Biologically active and mature hirudin was efficiently expressed and secreted into the extracellular medium. About 19 mg/L of hirudin was found in the culture supernatant in the case of a two-copy integrant of the strain HPBl under suboptimal culture conditions.

  • PDF

외래 단백질 발현을 위한 새로운 숙주 시스템으로서의 메탄올 자화효모 (Methylotrophic Yeasts as a New Host for Heterologous Protein Expression)

  • 강현아;이상기
    • KSBB Journal
    • /
    • 제16권1호
    • /
    • pp.15-23
    • /
    • 2001
  • The development of expression systems for heterologous proteins has been greatly demanded not only for the study of the structure/function relationships of these proteins but also for their biotechnological and pharmaceutical applications. During the past decades, the methylotrophic yeast Hansenula polymorpha and Pichia pastoris have drawn attention as one of promising hosts for the production of a variety of heterologous proteins. The increasing popularity of H. polymorpha and P. pastoris as the host systems can be attributed to the several advantages over the traditional yeast Saccharomyces cerevisiae, such as the availability of very strong and tightly regulated promoters from the enzymes involved in the metabolism of methanol, a very high-cell density even on simple mineral media, and a high stability of expression plasmids. Furthermore, it has been observed that glycoproteins from these two yeasts are less hyperglycoylated compared to those from S. cerevisiae. Despite substantial similarities as methylotrophic yeasts, however, these two expression systems have some unique features distinguished from each other. In this paper we present a brief overview on the present status of the expression systems developed in methylotrophic yeast, mainly focusing on the similarities and differences between the H. polymorpha and P. pastoris systems.

  • PDF

Expression of FMD virus-like particles in yeast Hansenula polymorpha and immunogenicity of combine with CpG and aluminum adjuvant

  • Jianhui Zhang;Jun Ge;Juyin Li;Jianqiang Li;Yong Zhang;Yinghui Shi;Jiaojiao Sun;Qiongjin Wang;Xiaobo Zhang;Xingxu Zhao
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.15.1-15.13
    • /
    • 2023
  • Background: Inactivated vaccines are limited in preventing foot-and-mouth disease (FMD) due to safety problems. Recombinant virus-like particles (VLPs) are an excellent candidate for a novel vaccine for preventing FMD, given that VLPs have similar immunogenicity as natural viruses and are replication- and infection-incompetent. Objectives: The 3C protease and P1 polyprotein of type O FMD virus (FDMV) was expressed in yeast Hansenula polymorpha to generate self-resembling VLPs, and the potential of recombinant VLPs as an FMD vaccine was evaluated. Methods: BALB/c mice were immunized with recombinant purified VLPs using CpG oligodeoxynucleotide and aluminum hydroxide gel as an adjuvant. Cytokines and lymphocytes from serum and spleen were analyzed by enzyme-linked immunosorbent assay, enzyme-linked immunospot assay, and flow cytometry. Results: The VLPs of FMD were purified successfully from yeast protein with a diameter of approximately 25 nm. The immunization of mice showed that animals produced high levels of FMDV antibodies and a higher level of antibodies for a longer time. In addition, higher levels of interferon-γ and CD4+ T cells were observed in mice immunized with VLPs. Conclusions: The expression of VLPs of FMD in H. polymorpha provides a novel strategy for the generation of the FMDV vaccine.

Rapid Selection of Multiple Gene Integrant for the Production of Recombinant Hirudin in Hansenula polymorpha

  • Kim Hwa Young;Sohn Jung Hoon;Kim Chul Ho;Rao K. Jagannadha;Choi Eui Sung;Kim Myung Kuk;Rhee Sang Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2000
  • For the rapid selection of higher recombinant hirudin producing strain in a methylotrophic yeast Hansenula polymorpha, a multiple gene integration and dose-dependent selection vector, based on a telomere-associated ARS and a bacterial aminoglycoside 3-phosphotransferase (aph) gene, was adopted. Two hirudin expression cassettes (HV1 and HV2) were constructed using the MOX promoter of H. polymorpha and the mating factor $\alpha$ secretion signal of S. cerevisiae. Multiple integrants of a transforming vector containing hirudin expression cassettes were easily selected by using an antibiotic, G418. Hirudin expression level and integrated plasmid copy number of the tested transformants increased with increasing the concentration of G418 used for selection. The expression level of HV1 was consistently higher than that of HV2 under the similar conditions, suggesting that the gene context might be quite important for the high-level gene expression in H. polymorpha. The highest hirudin producing strain selected in this study produced over 96 mg/L of biologically active hirudin in a 500-mL flask and 165 mg/L in a 5-L fermentor.

  • PDF

Development of a Genome-Wide Random Mutagenesis System Using Proofreading-Deficient DNA Polymerase ${\delta}$ in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Oh Cheol;Kim, Sang-Yoon;Hwang, Dong Hyeon;Oh, Doo-Byoung;Kang, Hyun Ah;Kwon, Ohsuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.304-312
    • /
    • 2013
  • The thermotolerant methylotrophic yeast Hansenula polymorpha is attracting interest as a potential strain for the production of recombinant proteins and biofuels. However, only limited numbers of genome engineering tools are currently available for H. polymorpha. In the present study, we identified the HpPOL3 gene encoding the catalytic subunit of DNA polymerase ${\delta}$ of H. polymorpha and mutated the sequence encoding conserved amino acid residues that are important for its proofreading 3'${\rightarrow}$5' exonuclease activity. The resulting $HpPOL3^*$ gene encoding the error-prone proofreading-deficient DNA polymerase ${\delta}$ was cloned under a methanol oxidase promoter to construct the mutator plasmid pHIF8, which also contains additional elements for site-specific chromosomal integration, selection, and excision. In a H. polymorpha mutator strain chromosomally integrated with pHIF8, a $URA3^-$ mutant resistant to 5-fluoroorotic acid was generated at a 50-fold higher frequency than in the wild-type strain, due to the dominant negative expression of $HpPOL3^*$. Moreover, after obtaining the desired mutant, the mutator allele was readily removed from the chromosome by homologous recombination to avoid the uncontrolled accumulation of additional mutations. Our mutator system, which depends on the accumulation of random mutations that are incorporated during DNA replication, will be useful to generate strains with mutant phenotypes, especially those related to unknown or multiple genes on the chromosome.

유전자 재조합 단백질 생산에 있어서 Pichia pastoris와 Hansenula polymorpha를 이용한 최적 발현 방법 개발 (The Optimization of Expression System for Recombinant Protein Production by Pichia pastoris and Hansenula polymorphs)

  • 강환구;전희진;김재호
    • KSBB Journal
    • /
    • 제15권2호
    • /
    • pp.174-180
    • /
    • 2000
  • 본 연구에서는 다른 host cell 에 비하여 여러 가지 장점을 가지고 있는 Methylotrophic yeast 중 Pichia pastoris와 Hans-enula polymorpha의 fed batch 실험을 통하여 유전자 재조합 단백질 발현최적조건을 구하여 각 균주의 유전자 재조합 albumin 발현 최적화 연구를 수행하였다. 글리세롤이 두 균주의 promoter의 AOX 1과 MOX promoter repression에 미치는 영향을 확인한 바 H. polymorpha가 P. pastoris보다 promoter repression이 심함을 알 수 있었다. 두 균주의 promoter를 induction시키는 최적 메탄올 농도는 P. pastoris의 경우 메탄올 8g/L, H. polymorpha의 경우는 13 g/L임을 알 수 있었다. 또한 메탄올에 의한 induction시기는 두 균주 모두 O.D. 4 정도되는 exponential growth stage에서 메탄올을 첨가하는 경우가 초기 세포 성장단계에 메탄올을 첨가한 경우에 비해 약 20% 정도 높아짐을 확인하였다. 두 균주의 재조합 albumin 발현에 미치는 pH의 영향을 조사하였는데, p. pastoris의 경우 pH 5에서 가장 높은 albumin 생산성을 보여 약 300mg/L albumin을 발현하였고, H. polymorpha 의 경우 pH 5와 6에서 최대 약 180 mg/L의 albumin을 발현하였지만 pH 8에서는 이의 절반 수준에 그쳤다. 두 균주의 최적 fed-batch 방법을 확인하는 실험을 수행하였는데 P. pastoris의 경우의 최적 fed-batch 방법은 mixed feeding은 바람직하지 않고 글리세롤 배지를 공급하여 세포를 성장시킨 후 글리세롤 공급을 멈추고 바로 메탄올로 전환하는 방법을 효과적이며, H. polymorpha의 경우 비성장속도 제어를 통한 글리세롤 공급으로부터 메탄올 공급으로의 단계적 전환방법이 균주의 albumin 발현에 큰 영향을 준다는 것을 알 수 있었다. 이 방법을 통하여 두 균주의 고농도 배양 실험을 수행한 결과 P. pastoris의 경우는 O.D. 300에서 약 4.7g albumin/L를 발현하였다. 이와같은 결과를 바탕으로 산업체에서 methlotrophic yeast를 이용한 상업화를 계획함에 있어서 host로서의 균주를 선택할 수 있는 기본 자료를 제공함과 아울러 균주가 선택된 후에 그 균주를 이용한 재조합 단백질 최적화 방법을 제공하여 줄 것으로 생각된다.

  • PDF

Fermentation Process Development of Recombinant Hansenula polymorpha for Gamma-Linolenic Acid Production

  • Khongto, B.;Laoteng, K.;Tongta, A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권11호
    • /
    • pp.1555-1562
    • /
    • 2010
  • Development of the strain and the fermentation process of Hansenula polymorpha was implemented for the production of ${\gamma}$-linolenic acid ($GLA,\;C18:3{\Delta}^{6,9,12}$), an n-6 polyunsaturated fatty acid (PUFA) that has been reported to possess a number of health benefits. The mutated ${\Delta}^6$-desaturase (S213A) gene of Mucor rouxii was expressed in H. polymorpha under the control of the methanol oxidase (MOX) promoter. Without the utilization of methanol, a high-cell-density culture of the yeast recombinant carrying the ${\Delta}^6$-desaturase gene was then achieved by fed-batch fermentation under glycerol-limited conditions. As a result, high levels of the ${\Delta}^6$-desaturated products, octadecadienoic acid ($C18:2{\Delta}^{6,9}$), GLA, and stearidonic acid ($C18:4{\Delta}^{6,9,12,15}$), were accumulated under the derepression conditions. The GLA production was also optimized by adjusting the specific growth rate. The results show that the specific growth rate affected both the lipid content and the fatty acid composition of the GLA-producing recombinant. Among the various specific growth rates tested, the highest GLA concentration of 697 mg/l was obtained in the culture with a specific growth rate of 0.08 /h. Interestingly, the fatty acid profile of the yeast recombinant bearing the Mucor ${\Delta}^6$-desaturase gene was similar to that of blackcurrant oil, with both containing similar proportions of n-3 and n-6 essential fatty acids.