Browse > Article
http://dx.doi.org/10.4014/jmb.1003.03004

Fermentation Process Development of Recombinant Hansenula polymorpha for Gamma-Linolenic Acid Production  

Khongto, B. (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Laoteng, K. (Biochemical Engineering and Pilot Plant Research and Development Unit, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at King Mongkut's University of Technology Thonburi)
Tongta, A. (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.11, 2010 , pp. 1555-1562 More about this Journal
Abstract
Development of the strain and the fermentation process of Hansenula polymorpha was implemented for the production of ${\gamma}$-linolenic acid ($GLA,\;C18:3{\Delta}^{6,9,12}$), an n-6 polyunsaturated fatty acid (PUFA) that has been reported to possess a number of health benefits. The mutated ${\Delta}^6$-desaturase (S213A) gene of Mucor rouxii was expressed in H. polymorpha under the control of the methanol oxidase (MOX) promoter. Without the utilization of methanol, a high-cell-density culture of the yeast recombinant carrying the ${\Delta}^6$-desaturase gene was then achieved by fed-batch fermentation under glycerol-limited conditions. As a result, high levels of the ${\Delta}^6$-desaturated products, octadecadienoic acid ($C18:2{\Delta}^{6,9}$), GLA, and stearidonic acid ($C18:4{\Delta}^{6,9,12,15}$), were accumulated under the derepression conditions. The GLA production was also optimized by adjusting the specific growth rate. The results show that the specific growth rate affected both the lipid content and the fatty acid composition of the GLA-producing recombinant. Among the various specific growth rates tested, the highest GLA concentration of 697 mg/l was obtained in the culture with a specific growth rate of 0.08 /h. Interestingly, the fatty acid profile of the yeast recombinant bearing the Mucor ${\Delta}^6$-desaturase gene was similar to that of blackcurrant oil, with both containing similar proportions of n-3 and n-6 essential fatty acids.
Keywords
${\gamma}$-Linolenic acid; ${\Delta}^6$-desaturase; high-cell-density cultivation; Hansenula polymorpha; specific growth rate;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 d'Anjou, M. C. and A. J. Daugulis. 1997. A model-based feeding strategy for fed-batch fermentation of recombinant Pichia pastoris. Biotechnol. Tech. 11: 865-868.   DOI   ScienceOn
2 Wan, X., Y. Zhang, P. Wang, F. Huang, H. Chen, and M. Jiang. 2009. Production of gamma-linolenic acid in Pichia pastoris by expression of a delta-6 desaturase from Cunninghamella echinulata. J. Microbiol. Biotechnol. 19: 1098-1102.   과학기술학회마을   DOI   ScienceOn
3 Weydemann, U., P. Keup, M. Piontek, A. W. M. Strasser, J. Schweden, G. Gellissen, and Z. A. Janowicz. 1995. High-level secretion of hirudin by Hansenula polymorpha - authentic processing of three different preprohirudins. Appl. Microbiol. Biotechnol. 44: 377-385   DOI   ScienceOn
4 Zhang, W., J. Sinha, L. A. Smith, M. Inan, and M. M. Meagher. 2005. Maximization of production of secreted recombinant proteins in Pichia pastoris fed-batch fermentation. Biotechnol. Prog. 21: 386-393.
5 Zhou, X.-R., S. Robert, S. Singh, and A. Green. 2006. Heterologous production of GLA and SDA by expression of Echium plantagineum $\Delta6$-desaturase gene. Plant Sci. 170: 665- 673.   DOI   ScienceOn
6 Sayanova, O., F. Beaudoin, L. V. Michaelson, P. R. Shewry, and J. A. Napier. 2003. Identification of Primula fatty acid Δ6- desaturases with n-3 substrate preferences. FEBS Lett. 27188: 1-5.
7 Schenk, J., K. Balazs, C. Jungo, J. Urfer, C. Wegmann, A. Zocchi, I. W. Marison, and U. von Stockar. 2007. Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by a Pichia pastoris $Mut^{+}$ strain. Biotechnol. Bioeng. 99: 368-377.
8 Shioya, S. 1992. Optimization and control in fed-batch bioreactors, pp. 111-142. In A. Fiechter (ed.). Advances in Biochemical Engineering/Biotechnology. Springer-Verlag, Berlin, Germany.
9 Simopoulos, A. P. 2002. The importance of ratio of omega-6/ omega-3 essential fatty acids. Biomed. Pharmacother. 56: 365- 379.   DOI   ScienceOn
10 Sohn, J.-H., M. Y. Beburov, E.-S. Choi, and S.-K. Rhee. 1993. Heterologous gene expression and secretion of the anticoagulant hirudin in methylotrophic yeast Hansenula polymorpha. J. Microbiol. Biotechnol. 3: 65-72.
11 Stearns, T., H. Ma, and D. Botstein. 1990. Manipulating yeast genome using plasmid vectors. Methods Enzymol. 185: 280- 297.   DOI
12 Swaaf, M. E. D., L. Sijtsma, and J. T. Pronk. 2003. High-celldensity fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol. Bioeng. 81: 666-672.   DOI   ScienceOn
13 Ratledge, C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86: 807-815.   DOI   ScienceOn
14 Napier, J. A., R. Haslam, M. V. Caleron, L. V. Michaelson, F. Beaudoin, and O. Sayanova. 2006. Progress towards the production of very long-chain polyunsaturated fatty acid in transgenic plants: Plant metabolic engineering comes of age. Physiol. Plant 126: 398-406.   DOI   ScienceOn
15 Nookaew, I., M. C. Jewett, A. Meechai, C. Thammarongtham, K. Laoteng, S. Cheevadhanarak, J. Nielsen, and S. Bhumiratana. 2008. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: A scaffold to query lipid metabolism. BMC Syst. Biol. 2: 71.   DOI   ScienceOn
16 Ratledge, C. and J. P. Wynn. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51: 1-51.   DOI
17 Rattray, J. B. M. and J. E. Hambleton. 1980. The lipid components of Candida boidinii and Hansenula polymorpha grown on methanol. Can. J. Microbiol. 26: 190-195.   DOI   ScienceOn
18 Ren, H. and J. Yuan. 2005. Model-based specific growth rate control for Pichia pastoris to improve recombinant protein production. J. Chem. Technol. Biotechnol. 80: 1268-1272.   DOI   ScienceOn
19 Kiel, J. A. K. W., I. Keizer-Gunnink, T. Krause, M. Komori, and M. Veenhuis. 1995. Heterologous complementation of peroxisome function in yeast: The Saccharomyces cerevisiae PAS3 gene restores peroxisome biogenesis in a Hansenula polymorpha per9 disruption mutant. FEBS Lett. 377: 434-438.   DOI   ScienceOn
20 Na-Ranong, S., K. Laoteng, P. Kittakoop, M. Tanticharoen, and S. Cheevadhanarak. 2006. Targeted mutagenesis of a fatty acid Δ6-desaturase from Mucor rouxii: Role of amino acid residues adjacent to histidine-rich motif II. Biochem. Biophys. Res. Commun. 339: 1029-1034.   DOI   ScienceOn
21 Kim, S. K., Y. H. Noh, J.-R. Koo, and H. S. Yun. 2010. Effect of expression of genes in the sphingolipid synthesis pathways on the biosynthesis of ceramide in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 20: 356-362.   과학기술학회마을
22 Laoteng, K., R. Ruenwai, M. Tanticharoen, and S. Cheevadhanarak. 2005. Genetic modification of essential fatty acids biosynthesis in Hansenula polymorpha. FEMS Microbiol. Lett. 245: 169- 178.   DOI   ScienceOn
23 Lepage, G. and C. C. Roy. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391-1396.
24 Mekhedov, S., O. M. de Ilarduya, and J. Ohlrogge. 2000. Toward a functional catalog of the plant genome: A survey of genes for lipid biosynthesis. Plant Physiol. 122: 389-401.   DOI
25 Gellissen, G., G. Kunze, C. Gaillardin, J. M. Cregg, E. Berardi, M. Veenhuis, and I. van der Klei. 2005. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - A comparison. FEMS Yeast. Res. 5: 1079-1096.   DOI   ScienceOn
26 Na-Ranong, S., K. Laoteng, P. Kittakoop, M. Tanticharoen, and S. Cheevadhanarak. 2005. Substrate specificity and preference of Δ6-desaturase of Mucor rouxii. FEBS Lett. 579: 2744-2748.   DOI   ScienceOn
27 Domínguez, A., E. Fermiñán, M. Sánchez, F. J. González, F. M. Pérez-Campo, S. García, et al. 1998. Non-conventional yeasts as hosts for heterologous protein production. Int. Microbiol. 1: 131-142.
28 Fan, Y. Y. and R. S. Chapkin. 1998. Importance of dietary γ- linolenic acid in human health and nutrition. J. Nutr. 128: 1411-1414.
29 Gill, I. and R. Valivety. 1997. Polyunsaturated fatty acids, Part 1: Occurrence, biological activities and applications. Trends Biotechnol. 15: 401-409.   DOI   ScienceOn
30 Guillou, H., S. D'andrea, V. Rioux, S. Jan, and P. Legrand. 2004. The surprising diversity of Δ6-desaturase substrates. Biochem. Soc. Trans. 32: 86-87.   DOI   ScienceOn
31 Hartner, F. S. and A. Glieder. 2006. Regulation of methanol utilization pathway gene in yeasts. Microb. Cell Fact. 5: 39.   DOI
32 Certik, M. and S. Shimizu. 1999. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 87: 1-14.   DOI   ScienceOn
33 Jacob, Z. 1993. Yeast lipid biotechnology. Adv. Appl. Microbiol. 39: 185-212.   DOI
34 Cahoon, E. B., J. M. Shockey, C. R. Dietrich, S. K. Gidda, R. T. Mullen, and J. M. Dyer. 2007. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: Solving bottlenecks in fatty acid flux. Curr. Opin. Plant Biol. 10: 236-244.   DOI   ScienceOn
35 Castillo, M. L. R. D., G. Dobson, R. Brennan, and S. Gordon. 2004. Fatty acid content and juice characteristics in black currant (Ribes nigrum L.) genotypes. J. Agric. Food Chem. 52: 948-952.   DOI   ScienceOn
36 Das, U. N. 2004. From bench to the clinic: $\gamma$-linolenic acid therapy of human gliomas. Prostaglandins Leukot. Essent. Fatty Acids 70: 539-552.   DOI   ScienceOn