• Title/Summary/Keyword: Yeast Cell

Search Result 1,303, Processing Time 0.031 seconds

Studies on the trehalose and other constituents of Saccharomyces cerevisiae Rasse O cultured on various molasses media (Saccharomyces cerevisiae Rasse O의 배양조건과 trdhalose를 중심으로한 균체성분과의 관계에 대하여)

  • 황규찬
    • Korean Journal of Microbiology
    • /
    • v.8 no.2
    • /
    • pp.85-89
    • /
    • 1970
  • Effects of the sugar content in molasses media and pH on cell constituents of produced yeast adopting Saccharomyces cerevisiae Rasse O as a seed organism were studied, and following results were obtained. 1. Trehalose accumulation of the yeast was reduced at lower range of pH, however protein was increased. 2. Trehalose content of the yeast enriched by feeding increased sugar at suitable pH. 3. There was no significant increase of thehalose content in the cell by feeding concentrated molasses at lower range of pH.

  • PDF

The effect of light on baker's yeast cell growth and protein secretion (효모의 증식과 단백질 분비에 대한 빛의 효과)

  • ;;L.A.Hojnicki;Malaney, G.W.;Tanner, R.D.
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.67-71
    • /
    • 1988
  • It has been observed that white loght can suppress both cell growth and protein secretion in Baker's yeast. This effect was explored in batch liquid fermentations. Possible applications of this phenomenon are (a) use as a tool for pre-concentrating excreted enzymes prior to subsequent purification and (b) an engineering variable for regulation yeast fermentations.

  • PDF

The Synergistic Action of the AL-Protease from Arthrobacter luteus on the Lysis of Yeast Cell Walls (Arthrobacter luteus가 생산하는 AL-Protease의 효모세포벽 용해 촉진작용)

  • Oh, Hong-Rock;Funatsu, Masaru
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.4
    • /
    • pp.401-408
    • /
    • 1985
  • The yeast cell wall lytic action of the alkaline AL-protease, which was found out of the crude Zymolyase that a kind of yeast cell wall lytic $endo-{\beta}-1$, 3-glucanase produced from Arthrobacter luteus, was investigated with the viable cells of S. sake and it's cell wall preparation. AL-protease on the lysis of the viable yeast cells showed very low activities with the alone, but the lytic activities were highly increased with the combination of AL-protease and Zymolyase. On the stepwise treatment of the viable yeast cells with AL-protease and Zymolyase, the cells were lysed highly only by the course having a treatment with Zymolyase after pretreatment with AL-protease. Thus synergistic action of AL-protease was not observed with any some commercial enzymes, known as a type of alkaline and serine protease such as AL-protease, and was also found to be affected greatly by the culture conditions and species of the yeast tested. AL-protease caused the release of some peptide and a lot of sugar from the cell wall preparation, but could not lysed the cell wall more than 66%. Whereas Zymolyase could lysed the cell walls almost completely with alone. On the basis of these results, the synergistic action of AL-protease on the lysis of S. sake cells is hypothesized that at first AL-protease bind to the yeast cell surface layer consisting of mannan and protein, and then changes their conformation to facilitate the penetration of Zymolyase from the outside to the inside framework layer constituted of alkali insoluble ${\beta}-1,\;3-glucan$.

  • PDF

Effects of Medium Components on L-Ornithine Production by Brevibacterium ketoglutamicum

  • TaeHo Lee;Yon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.41-45
    • /
    • 1996
  • Effects of yeast extract and ammonium sulfate were investigated on the production of L-or-nithine by an arginine auxotroph, Brevibacterium ketoglutamicum in flask and batch cultures. Yeast extract as an arginine source and ammonium sulfate as an inorganic nitrogen source had significant effects on L-ornithine production and cell growth. L-ornithine production was repressed by the excessive addition of arginine. Reversion of auxotrophic cells to the wild type was observed when the initial yeast extract concenfration was too low. There existed optimum concentrations of yeast extract and ammonium sulfate for L-or-nithine production. The effects of yeast extract and ammonium sulfate concentrations of the Leudeking-Piret model parameters were examined to analyze the relationship between cell growth and L-ornithine production.

  • PDF

Effect of Ionizing Radiation and Mercury Chloride (II) on Cell Morphology in Yeast Cells Frequently and Temporarily Treated with Both Stressors (방사선과 염화수은의 일시 및 반복 복합 처리된 효모세포의 산화적 스트레스 적응과 형태 변화)

  • Kim, Su-Hyoun;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. Ionizing radiation (IR) is an active tool for destruction of cancer cells and diagnosis of diseases, etc. IR induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm and nucleus. Yeasts have been a commonly used material in biological research. In yeasts, the physiological response to changing environmental conditions is controlled by the cell types. Growth rate, mutation and environmental conditions affect cell size and shape distributions. In this work, the effect of IR and mercury chloride (II) on the morphology of yeast cells were investigated. Saccharomyces cerevisiae cells were treated with IR, mercury chloride (II) and IR combined with mercury chloride (II). Non-treated cells were used as a control group. Morphological changes were observed by a scanning electron microscope (SEM). The half-lethal condition from the previous experimental results was used to the IR combined with mercury. Yeast cells were exposed to 400 and 800 Gy at dose rates of 400Gy $hr^{-1}$ or 800 Gy $hr^{-1}$, respectively. Yeast cells were treated with 0.05 to 0.15 mM mercury chloride (II). Oxidative stress can damage cellular membranes through a lipidic peroxidation. This effect was detected in this work, after treatment of IR and mercury chloride (II). The cell morphology was modified more at high doses of IR and high concentrations of mercury chloride(II). IR and mercury chloride (II) were of the oxidative stress. Cell morphology was modified differently according to the way of oxidative stress treatment. Moreover, morphological changes in the cell membrane were more observable in the frequently stress treated cells than the temporarily stress treated cells.

Determination of the Dielectrophoretic Force on a Cell in a Micro Planar Electrode Structure

  • Park, Jung-Hoon;Lee, Sang-Wook;Kim, Yong-Kweon
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.66-71
    • /
    • 1997
  • The dielectrophoretic(DEP) force acting on a cell in an electric field is experimentally determined. A cell is accelerated by the DEP force in an electric field generated between micro planar electrodes. the position of the cell is measured and the velocity and acceleration of the cell are calculated based on the measured position data. The DE force is determined from the motion equation of a moving cell in suspension. The electrode structure is fabricated by micromachining technology and the height of electrodes is 1 $\mu\textrm{m}$. Radish cell and yeast are used in th experiments. In the case of radish cell, the DEP force increases as voltage or frequency(1MHz∼3MHz) increases. The voltage dependence can be explained that the DEP force increases when ▽│E│$^2$increases. The frequency dependence means that Re[x\ulcorner] of radish cell is maximized in a certain frequency. In the case of yeast, the DEP force increases only as voltage increases. The reason for the voltage dependence is the same with the case of radish. The DEP force increases only as voltage increases. The reason for the voltage dependence is the same with the case of radish. The DEP force on a yeast does not vary when the frequency varies from 1MHz to 3MHz. This result coincides with the fact that the value of calculated Re[x\ulcorner] is constant in the test frequency range.

  • PDF

Fatty acid composition and docosahexaenoic acid (DHA) content of the heterotrophic dinoflagellate Oxyrrhis marina fed on dried yeast: compared with algal prey

  • Yoon, Eun Young;Park, Jaeyeon;Jeong, Hae Jin;Rho, Jung-Rae
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.67-74
    • /
    • 2017
  • The heterotrophic dinoflagellate Oxyrrhis marina is known to produce high levels of docosahexaenoic acid (DHA) when fed on diverse algal prey. However, large-scale culturing of algal prey species is not easy and requires a large amount of budget, and thus more easily cultivable and low-cost prey is required. Dried yeast was selected as a strong candidate for an alternative prey in our preliminary tests. Thus, we explored the fatty acid composition and DHA production of O. marina fed on dried yeast and compared these results to those of O. marina fed on two algal prey species: the phototrophic dinoflagellate Amphidinium carterae and chlorophyte Chlorella sp. powder. O. marina fed on dried yeast, which does not contain DHA, produced the same high level of DHA as those fed on DHA-containing A. carterae. This indicates that O. marina is likely to produce DHA by itself regardless of prey items. Furthermore, the DHA content (and portion of total fatty acid methyl esters) of O. marina satiated with dried yeast, 52.40 pg per cell(and 25.9%), was considerably greater than that of O. marina fed on A. carterae (26.91 pg per cell; 15.7%) or powder of Chlorella sp. powder (21.24 pg per cell; 16.7%). The cost of dried yeast (approximately 10 US dollars for 1 kg dried yeast) was much lower than that of obtaining the algal prey (approximately 160 US dollars for 1 kg A. carterae). Therefore, compared to conventional algal prey, dried yeast is a more easily obtainable and lower-cost prey for use in the production of DHA by O. marina.

Monitoring on Alcohol Fermentation Properties of Red Ginseng Extracts. (홍삼액의 알코올 발효 특성 모니터링)

  • Kim, Seong-Ho;Kang, Bok-Hee;Noh, Sang-Gyun;Kim, Jong-Guk;Lee, Sang-Han;Lee, Jin-Man
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.550-555
    • /
    • 2008
  • This study focused on alcohol fermentation properties of red ginseng extracts using Saccharomyces cerevisiae JF-Y3. Central composite design was employed to investigate the influence of red ginseng extract content ($10{\sim}50%$, v/v) and yeast extract ($0.5{\sim}2.5%$, w/v) on the properties of alcohol fermentation added with red ginseng extracts. Yeast cell growth was affected both by red ginseng extract content and yeast extract content, and red ginseng extract content had a greater effect on yeast cell number than yeast extract content. Yeast cell number increased along with decrease of the red ginseng extract content and with increase of yeast extract content. Alcohol content was maximal at 30% red ginseng extracts and 0.50% yeast extract and the predicted maximum value of alcohol content was 12.45%. Brix degree and total sugar content were significant within 1% level (p<0.01), and brix degree was affected both by red ginseng extract and yeast extract content. Total sugar content was significantly affected by red ginseng content.

Biomass Production of Saccharomyces cerevisiae KFCC 10823 and Its Use in Preparation of Doenjang

  • Yoo, Jin-Young;Kim, Hyeon-Gyu;Kwon, Dong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 1997
  • An ethanolic fermentation process was developed for preparing Doenjang with high ethanol. Higher and efficient viable cell production of salt-tolerant ethanolic yeast is a prerequisite for the successful commercial-scale process of ethanol production during Doenjang fermentation. Culture conditions of salt-tolerant yeast, S. cerevisiae KFCC 10823, was studied in terms of the effect of several environmental and nutritional factors. Viable cell numbers were the highest in a medium containing the following components per liter of water: soysauce, 300ml; dextrose, 50 g; beef extract, 5 g; yeast extract, 5 g; $KH_2PO_4$, 5 g; NaCl, 50 g. The optimal culture conditions of S. cerevisiae KFCC 10823 were pH 5.5, $25^{\circ}C$, 200 rpm and 0.5 vvm. Yeast viability during batch fermentation was gradually decreased to a level less than $90{\%}$ after 35 hours. The maximum cell number was $2.2{\times}10_7$ cells/ml at the optimal condition. Doenjang prepared with ethanolic yeast was ripened after 45 days at $30^{\circ}C$. This Doenjang contains 470 mg% of amino nitrogen and 2.5% ethanol. The shelf-life at $30^{\circ}C$ was theoretically estimated as 444 days.

  • PDF

Simultaneous Production of Invertase and Yeast Extract from Baker's Yeast (Baker's yeast로부터 invertase 및 yeast extract 동시 생산공정)

  • 최순자;정봉현
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.308-311
    • /
    • 1998
  • A novel process was developed to simultaneously produce invertase and yeast extract from baker's yeast using ultrafiltration (UF) and microfiltration (MF) membrane processing. After the extraction of invertase under the optimal condition obtained in this study, invertase was separated from yeast cells using a hollow fiber membrane with a pore size of 0.1 $\mu\textrm{m}$. The resulting permeate containing invertase was concentrated using a hollow fiber membrane with a nominal molecular weight cut-off of 30 kDa. The yeast cell and permeate solutions, which were obtained after MF and UF membrane processing, respectively, were mixed together, and the autolysis was performed at 50$^{\circ}C$ in the presence of 5% (w/v) ethanol and 1% (w/v) NaCl. As a result, the yeast extract and invertase could be simultaneously produced from baker's yeast by this novel process.

  • PDF