• 제목/요약/키워드: Yaw angle

검색결과 329건 처리시간 0.021초

얼굴 위치와 방향 추적을 이용한 3차원 시각화 (3D Visualization using Face Position and Direction Tracking)

  • 김민하;김지현;김철기;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.173-175
    • /
    • 2011
  • 본 논문에서는 얼굴의 3차원 위치와 방향을 추적하여 3D 물체를 다각도에서 볼 수 있는 사용자 인터페이스를 제시한다. 구현된 사용자 인터페이스는 사용자가 상하좌우로 얼굴을 움직였을 때, 얼굴의 3차원 위치 좌표를 이용하여 사용자가 움직이는 방향으로 물체를 이동시킨다. 그 뒤 사용자가 상하(pitch)좌우(yaw)로 얼굴을 회전시켰을 때, 얼굴의 Euler angle값을 이용하여 얼굴의 회전각만큼 물체를 회전시켜 물체의 측면을 제공한다. 다양한 위치와 방향에 사용자가 있을 때 물체의 움직임의 정확성과 반응성을 실험한 결과 시각화가 잘 됨을 확인하였다.

  • PDF

기동성을 위한 후륜 조향 차량의 최적 성능에 대한 연구 (An Experimental Study of Optimal Performance of Rear Wheel Steering Vehicle for Maneuverability)

  • 안국진;좌은혁;박관우;윤영식;이경수
    • 자동차안전학회지
    • /
    • 제11권2호
    • /
    • pp.23-28
    • /
    • 2019
  • This paper presents an optimal performance of rear wheel steering vehicle for maneuverability. The maneuverability of vehicle is evaluated in terms of yaw rate, body slip angle and driver input. The maneuverability of vehicle can be improved by rear wheel steering system. To obtain optimal performance of rear wheel steering vehicle, the optimal control history is designed. The high dimensional trajectory optimization problem is solved by formulating a quadratic program considering rear wheel steer input. To evaluate handling performance 7 degree-of-freedom vehicle model with actuation sub-models is designed. A step steer test is conducted to evaluate rear wheel steering vehicle. A response time, a TB factor, overshoot, and yaw rate gain are investigated through objective criteria, assessment webs. The handling performance of vehicle is evaluated via computer simulations. It has been shown from simulation studies that optimal controlled rear wheel steering vehicle provides improved performance compared to others.

동력분산형 고속열차의 승차감 개선에 관한 연구 (A Study on the Ride Quality Enhancement of the High-speed Electric Multiple Unit)

  • 전창성;김상수;김석원
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.561-567
    • /
    • 2018
  • 본 연구는 동력분산형 고속열차의 승차감을 개선하기 위하여 진행되었다. 동력분산형 고속열차 시제차량의 동역학 해석을 통해 300km/h이상의 임계속도를 갖는 등가 답면구배의 범위는 0.05에서 0.25사이임을 확인하였다. 초기에 적용된 차륜 프로파일 S1002는 4만km이상의 누적주행거리에도 불구하고 등가 답면구배는 0.033 정도였고, 안정적인 운행을 위해서는 등가 답면구배가 0.061이 넘는 XP55가 더 적합함을 확인하였다. 동력분산형 고속열차의 승차감을 개선하기 위한 방안으로 요댐퍼의 설치 각도를 $7.35^{\circ}$에서 $0^{\circ}$로 변경하고, 민감도 분석과 최적화를 통해 도출된 공기스프링 횡 및 상하방향 강성 30% 감소, 2차 수직댐퍼 및 횡댐퍼 댐핑계수를 50% 증가시키는 방안을 제안하였다. 이를 적용하면 차체 가속도를 평균 20%정도 개선시킬 수 있을 것으로 예상되었다. 도출된 승차감 개선 방법의 일부인 요댐퍼 설치각도를 $0^{\circ}$로 변경하고 횡댐퍼의 댐핑계수를 30% 증가시킨 후 경부고속선에서 300km/h 속도로 시운전을 진행하였을 때, 차체 횡가속도는 평균 34.3% 개선되었고, 본 연구에서 제안된 추가적인 개선 방안은 향후 시운전 시험 시에 적용될 예정이다. 본 연구에서 사용된 승차감 개선 프로세스는 향후 동력분산형 고속열차의 상업 운행 시에 발생할 수 있는 승차감 관련 문제 해결에 사용될 수 있다.

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • 한국해양공학회지
    • /
    • 제36권2호
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.

경사진 노면에서의 차량의 종 속도 추정 (Vehicle Longitudinal Velocity Estimation on Inclined Road)

  • 이상엽;김인근;이동훈;허건수
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.14-19
    • /
    • 2012
  • On-line and real-time information of the longitudinal velocity is the essential factor for the Advanced Vehicle Control Systems such as ABS(Anti-lock Brake System), TCS(Traction Control System), ESC (Electronic Stability Control) etc. However, the longitudinal velocity cannot be easily measured or calculated during braking maneuvering. A new algorithm is presented for the estimation of the longitudinal velocity with the measurements of the vehicle longitudinal/lateral acceleration, steering angle and yaw rate. The algorithm is designed utilizing the Extended Kalman Filter based on the 3 degree of freedom vehicle model. In order to compensate for the biased sensor signal on the inclined road, the inclined angle is also estimated. The performance of the proposed estimation algorithm is evaluated in field tests.

판스프링의 이력특성이 대형트럭의 조종성능에 미치는 영향에 관한 연구 (A Study on the Effects of Hysteretic Characteristics of Leaf Springs on Handling of a Large-Sized Truck)

  • 문일동;오재윤
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.157-164
    • /
    • 2001
  • This paper performs static and dynamic tests of a multi-leaf spring and a tapered leaf spring to investigate their hysteretic characteristics. In the static test, trapezoidal input load is applied with 0.1Hz excitation frequency and with zero initial loading conditions. In the dynamic test, sinusoidal input load is applied with five excitation amplitudes and three excitation frequencies. In these tests, static and dynamic hysteretic characteristics of the multi-leaf spring and the tapered leaf spring are compared, and, the effects of excitation amplitudes and frequencies on dynamic spring rate are also shown. In this paper, actual vehicle tests are performed to study the effects of hysteretic characteristics of the large-sized truck's handling performance. The multi-leaf spring or the tapered leaf spring is used in the front suspension. The actual vehicle test is performed in a double lane change track with three velocities. Lateral acceleration, yaw rate and roll angle are measured using a gyro-meter located at the mass center of the cab. The test results showed that a large-sized truck with a tapered leaf spring needs to have an additional apparatus such as roll stabilizer bar to increase the roll stabilizer due to hysteretic characteristics.

  • PDF

대형트럭 프레임의 결합방법에 따른 비틀림 특성이 동적 성능에 미치는 영향 (The Effects of Torsional Characteristics according to Mounting Method of the Frame of a Large-sized Truck on Dynamic Performance)

  • 문일동;김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.731-737
    • /
    • 2005
  • This paper evaluates dynamic performance of a cab over type large-sized truck for estimating the effects of frame's torsional characteristics using a computer model. The computer model considers two mounting methods of frame, flange mounting and web mounting. Frame is modeled by finite elements using MSC/NASTRAN In order to consider the flexibility of frame. The torsional test of the frame is conducted In order to validate the modeled finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. To estimate the effects of frame's torsional characteristics on dynamic performance, simulations are performed with the flange mounting and web mounting frame. Simulation results show that the web mounting frame's variations of roll angle, lateral acceleration, and yaw rate are larger than the flange mounting frame's variations, especially in the high velocity and the second part of the double lane course.

포텐셜함수 기반 초공동 수중운동체 플레이닝 회피 제어 연구 (Planing Avoidance Control for a Supercavitating Underwater Vehicle Based on Potential Functions)

  • 김선홍;김낙완;김민재;김종혁;이건철
    • 한국해양공학회지
    • /
    • 제32권3호
    • /
    • pp.208-212
    • /
    • 2018
  • In this paper, we focus on planing avoidance control for a supercavitating underwater vehicle based on the potential function method. The planing margin can be calculated using the relative position between the cavity center and vehicle center at the end of the vehicle. The planing margin was transformed into a limit variable such as the pitch angle and yaw angle limit. To prevent the vehicle attitude from exceeding the limit variable, a potential function based planing envelope protection method was proposed. The planing envelope protection system overrides commands from the tracking controller, and the vehicle attitude converges to a desired angle, in which the potential function is minimized. Numerical simulations were performed to analyze the physical feasibility and performance of the proposed method. The results showed that the proposed methods eliminated the planing, allowing the vehicle to follow tracking commands.

최적 타이어 힘 분배 방법을 통한 전기차의 독립 6WD/6WS에 관한 연구 (A Study on an Independent 6WD/6WS of Electric Vehicle using Optimum Tire Force Distribution)

  • 김동형;김창준;김영렬;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.632-638
    • /
    • 2010
  • This paper presents an optimum tire force distribution method for 6WD/6WS(6-Wheel-Drive and 6-Wheel-Steering) electric vehicles. Using an independent steering and driving system, the performance of 6WD/6WS vehicles can be improved, as, for example, with respect to their maneuverability under low speed and their stability at high speed. Therefore, there should be a control strategy for finding the optimum tire forces that satisfy the driver's command and minimize energy consumption. From the driver's commands (steering angle and accelerator/brake pedal stroke), the desired yaw moment, the desired lateral force, and the desired longitudinal force were obtained. These three values were distributed to each wheel as the torque and the steering angle, based on the optimum tire force distribution method. The optimum tire force distribution method finds the longitudinal/lateral tire forces of each wheel that minimize the cost function, which is the sum of the normalized tire forces. Next, the longitudinal/lateral tire forces of each wheel are converted into the reference torque inputs and the steering wheel angle inputs. The proposed method was tested through a simulation, and its effectiveness was verified.

각변위 방식을 이용한 캡슐의 오리엔테이션 측정 방법 (Orientation Tracking Method based on Angular Displacement for Wireless Capsule Endoscope)

  • 유영선;김명유;유영갑
    • 한국콘텐츠학회논문지
    • /
    • 제8권2호
    • /
    • pp.27-32
    • /
    • 2008
  • 본 논문은 각변위 방식을 이용한 소화경로 모델링 및 경로에 대한 캡슐의 오리엔테이션 측정 방법을 제안하였다. 제안하는 방법은 캡슐 내시경의 자세를 3차원 방향벡터와 이의 회전성분으로 표현하였다. 소화경로에 대한 캡슐의 오리엔테이션 정보인 롤, 피치 그리고 요우 값은 각각 $1.6^{\circ}$ 이내의 오차를 보였다. 제안된 방법은 자기장을 이용한 오리엔테이션 측정에서 롤값 측정 문제를 해결하였다. 오일러 각을 이용한 기존의 오리엔테이션 측정 방식과 비교하여 알고리즘의 복잡도를 줄였다.