• Title/Summary/Keyword: Yarn-dyed woven fabric

Search Result 7, Processing Time 0.026 seconds

Color Prediction of Yarn-dyed Woven Fabrics -Model Evaluation-

  • Chae, Youngjoo;Xin, John;Hua, Tao
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.347-354
    • /
    • 2014
  • The color appearance of a yarn-dyed woven fabric depends on the color of the yarn as well as on the weave structure. Predicting the final color appearance or formulating the recipe is a difficult task, considering the interference of colored yarns and structure variations. In a modern fabric design process, the intended color appearance is attained through a digital color methodology based on numerous color data and color mixing recipes (i.e., color prediction models, accumulated in CAD systems). For successful color reproduction, accurate color prediction models should be devised and equipped for the systems. In this study, the final colors of yarn-dyed woven fabrics were predicted using six geometric-color mixing models (i.e., simple K/S model, log K/S model, D-G model, S-N model, modified S-N model, and W-O model). The color differences between the measured and the predicted colors were calculated to evaluate the accuracy of various color models used for different weave structures. The log K/S model, D-G model, and W-O model were found to be more accurate in color prediction of the woven fabrics used. Among these three models, the W-O model was found to be the best one as it gave the least color difference between the measured and the predicted colors.

Visual Color Mixing Effect of Yarns in Textile Fabrics (직물을 구성하는 실의 시각적 혼색 효과)

  • Chae, Youngjoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.3
    • /
    • pp.373-383
    • /
    • 2019
  • This research investigated the effect of individual yarn colors on the perception of overall colors of yarn-dyed woven fabrics. The way the colors of yarn-dyed woven fabrics are perceived is known as visual color mixing: when the different colored yarns juxtaposed on the fabric surface are observed from some distance away, they are visually mixed in our eyes and perceived as a solid color. However, we can still see individual yarn colors that make the fabrics look obviously different from actual solid colors. To quantify this visual color mixing effect, twenty-one sateen fabrics were produced in a wide range of colors using cyan, magenta, and yellow yarns, and the colors were measured instrumentally. The obtained colorimetric values were converted into solid color images on a CRT monitor. Then, the physical fabrics were scanned, and the scanned images were displayed on the monitor with solid color images in pairs for visual color difference evaluation. The woven and solid colors in each pair were of physically identical color; however, the visual color difference was as large as $4.81{\Delta}{E^*}_{ab}$ on average. A visual color difference model was proposed by considering this parametric effect of individual yarn colors.

Optimized Structural and Colorimetrical Modeling of Yarn-Dyed Woven Fabrics Based on the Kubelka-Munk Theory (Kubelka-Munk이론에 기반한 사염직물의 최적화된 구조-색채모델링)

  • Chae, Youngjoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.503-515
    • /
    • 2018
  • In this research, the three-dimensional structural and colorimetrical modeling of yarn-dyed woven fabrics was conducted based on the Kubelka-Munk theory (K-M theory) for their accurate color predictions. In the K-M theory for textile color formulation, the absorption and scattering coefficients, denoted K and S, respectively, of a colored fabric are represented using those of the individual colorants or color components used. One-hundred forty woven fabric samples were produced in a wide range of structures and colors using red, yellow, green, and blue yarns. Through the optimization of previous two-dimensional color prediction models by considering the key three-dimensional structural parameters of woven fabrics, three three-dimensional K/S-based color prediction models, that is, linear K/S, linear log K/S, and exponential K/S models, were developed. To evaluate the performance of the three-dimensional color prediction models, the color differences, ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and ${\Delta}E_{CMC(2:1)}$, between the predicted and the measured colors of the samples were calculated as error values and then compared with those of previous two-dimensional models. As a result, three-dimensional models have proved to be of substantially higher predictive accuracy than two-dimensional models in all lightness, chroma, and hue predictions with much lower ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and the resultant ${\Delta}E_{CMC(2:1)}$ values.

Effects of Weaving Machine Characteristics on the Physical Properties of PET Fabrics (IV) (직기 특성이 PET직물 물성에 미치는 영향(IV))

  • Kim Seung Jin;Jin Young Dae;Kang Ji man;Jung Gee Jin
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.54-61
    • /
    • 2004
  • This research surveys the differences of fabric mechanical properties with the different looms and the fabric positions according to the warp and weft yarn tensions on the Vamatex and Omega-Panter looms respectively. For this purpose, the grey fabrics woven by PET filament using two test looms are dyed and finished. The processing shrinkages are measured on each processes such as dryer, scouring, pre-set, dyeing and final-set using the fabric density and width. The mechanical properties of the finished fabrics are measured and discussed with relation to the warp and weft yarn tensions of the two looms and the fabric positions. In addition, the fabric thickness according to the fabric positions such as right, left selvedges and center of the fabrics is also measured and discussed with the characteristics of the Vamatex and Omega-Panter looms.

Goniometric Image Analysis of Observed Color Change in Dyed Trilobal Cross-section Polyester Monofilament Fabrics

  • Lee, Jung-Min;Kim, Jong-Jun;Jeon, Dong-Won;Ahn, Byung-Tae;Choi, Jung-Im
    • Journal of Fashion Business
    • /
    • v.11 no.6
    • /
    • pp.115-124
    • /
    • 2007
  • The cross-section of the polyester filament yarn has been modified to have a variety of shape for aesthetic, added functions and sensitivities, and other purposes. Transparent polyester filament of trilobal cross-section has unique optical properties with high anisotropic reflectivity and transmissivity. The monofilament yarns may be utilized to impart to the fabrics lustrous appearance along with unique color change in case differently dyed yarns are woven together. The color changes of the fabric specimens according to the changes in observation and lighting conditions were analyzed using a CCD camera and an image analysis software. The changes of color/luster of the fabric specimens were measured and analyzed based on RGB, $L^*a^*b^*,\;L^*C^*h,$ and the color distribution within a three-dimensional color space.

A Textile Analysis of Woolen Carpet Excavated from Seongjeonggak Hall, in Changdeokgung Palace (창덕궁 성정각 출토 모담(毛毯) 직물 분석)

  • Pak, Seonghee;Lee, Ryangmi;An, Boyeon;Cho, Misook
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.120-134
    • /
    • 2021
  • A Woolen carpet from the late Joseon Dynasty was unearthed in the process of repairing Seongjeonggak in Changdeokgung. Since relics are rarer than documentary records, the woolen carpet is highly valued as a relics. It is presumed to have been woven in the late 19th or early 20th century because there is a record of repairing Seongjeonggak in 1907. In the carpet, a pattern is made by inserting colored yarn dyed yellow and red onto a reddish-purple ground weave. The selvage of the woolen carpet used cotton thread, and jute is used for the warp and weft of the ground weave. The colored patterns is made of wool in the form of loop pile. Cut piles may appear occasionally when the colored yarn changes, but are almost invisible from the surface because they are pressed tightly with a shuttered weft. Making carpets with jute and wool is thought to be influenced by the Brussels carpets of the mid-18th century. Furthermore, the woolen carpet is torn and the pattern is completely unclear; however, it is understandable that the pattern is partially repeated. Microscopic and Fourier transform-Infrared spectrometer(FT-IR) analyses were performed for the above investigation. To identify the dyes used in relics, we compared them with natural dyed fabric samples based on chromaticity measurements and Ultraviolet/Visible spectrophotometer(UV-Vis) analysis. These analyses revealed that the woolen carpet's dyed green yarn did not use indigo, and reddish-purple ground weave is estimated to have used Caesalpinia sappan.

A Study on the Meaning and Types of Banpo [斑布] during the Joseon Dynasty (조선시대 반포(斑布)의 의미와 형식 연구)

  • Ree, Jiwon
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.3
    • /
    • pp.164-183
    • /
    • 2020
  • In the textile culture of the Joseon Dynasty, the historic record of Banpo is fragmentary and contains many missing details. The main reason is a lack of associated literature, and it is also significant that the actual substance used is not clear at present. Banpo is a kind of cotton, but this has not been confirmed in the traditional textiles that are currently handed down. The word Ban [斑] in Banpo means "stain", and the letter Po [布] means "fabric". At the border of white discourse, Banpo did not receive attention as a research topic. This study is an attempt to restore some of the textile culture of the Joseon Dynasty through Banpo. Banpo is not just limited to the Joseon Dynasty; it is an important material for examining the development of textile culture and exchange in East Asia. This study was broadly divided into three parts. First, the record and meaning of Banpo during the Joseon Dynasty were examined. Records of Banpo can be seen from the early Joseon period during King Sejo and Seongjong, and the production and actual use of Banpo have been confirmed. Banpo was maintained until the beginning of the 20th century, but is no longer observed. Banpo is a woven fabric made of cotton yarn dyed in many colors and has appeared in Southeast Asia since ancient times. In East Asia, there are other fabrics similar to Banpo, such as Ho [縞], Sum [纖], and Chim [綅]. In particular, the correlation between Banpo and Ho is an important link in understanding Banpo in the Joseon Dynasty. Second, the meaning of Banpo was examined from various angles through comprehensive analysis of Chinese and Japanese literature records and cases. The appearance and development of Banpo moved in sync with the period when cotton was introduced into East Asia. In East Asia, cotton was introduced and produced in earnest from the end of the Song Dynasty to the beginning of the Yuan Dynasty, and the meaning of Banpo was diversified. In China, the name of Banpo was changed to Hwapo [花布], Gizapo [碁子布], Gizahwapo [棋子花布], etc. Japan was late to introduce cotton and developed it in acceptance of the changed meaning. In Japan, use of the name Banpo is not on record, but a Ryujo [柳條] fabric of the same type as banpo has been identified. This Ryujo is the same concept as Ho and Hwapo, and later merged into Ho. Names such as Ho, Hwapo, Banpo, etc. were used differently in each country, but the form was shared across East Asia. Third, based on the meaning of Banpo shared in East Asia, the format of Banpo in the Joseon Dynasty was classified. The format of Banpo in the Joseon Dynasty can be divided into grid and striped versions. The name Banpo disappeared over time, but the form remained and was passed down until recently. I hope that this study will help restore Banpo in the future.