• Title/Summary/Keyword: YOLO v3

Search Result 49, Processing Time 0.024 seconds

A Study on Improvement of Dynamic Object Detection using Dense Grid Model and Anchor Model (고밀도 그리드 모델과 앵커모델을 이용한 동적 객체검지 향상에 관한 연구)

  • Yun, Borin;Lee, Sun Woo;Choi, Ho Kyung;Lee, Sangmin;Kwon, Jang Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.3
    • /
    • pp.98-110
    • /
    • 2018
  • In this paper, we propose both Dense grid model and Anchor model to improve the recognition rate of dynamic objects. Two experiments are conducted to study the performance of two proposed CNNs models (Dense grid model and Anchor model), which are to detect dynamic objects. In the first experiment, YOLO-v2 network is adjusted, and then fine-tuned on KITTI datasets. The Dense grid model and Anchor model are then compared with YOLO-v2. Regarding to the evaluation, the two models outperform YOLO-v2 from 6.26% to 10.99% on car detection at different difficulty levels. In the second experiment, this paper conducted further training of the models on a new dataset. The two models outperform YOLO-v2 up to 22.40% on car detection at different difficulty levels.

Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System (가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안)

  • Lee, Seungju;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.776-788
    • /
    • 2020
  • In this paper, a vehicle type recognition system using deep learning and a license plate recognition system are proposed. In the existing system, the number plate area extraction through image processing and the character recognition method using DNN were used. These systems have the problem of declining recognition rates as the environment changes. Therefore, the proposed system used the one-stage object detection method YOLO v3, focusing on real-time detection and decreasing accuracy due to environmental changes, enabling real-time vehicle type and license plate character recognition with one RGB camera. Training data consists of actual data for vehicle type recognition and license plate area detection, and synthetic data for license plate character recognition. The accuracy of each module was 96.39% for detection of car model, 99.94% for detection of license plates, and 79.06% for recognition of license plates. In addition, accuracy was measured using YOLO v3 tiny, a lightweight network of YOLO v3.

Object Detection of AGV in Manufacturing Plants using Deep Learning (딥러닝 기반 제조 공장 내 AGV 객체 인식에 대한 연구)

  • Lee, Gil-Won;Lee, Hwally;Cheong, Hee-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.36-43
    • /
    • 2021
  • In this research, the accuracy of YOLO v3 algorithm in object detection during AGV (Automated Guided Vehicle) operation was investigated. First of all, AGV with 2D LiDAR and stereo camera was prepared. AGV was driven along the route scanned with SLAM (Simultaneous Localization and Mapping) using 2D LiDAR while front objects were detected through stereo camera. In order to evaluate the accuracy of YOLO v3 algorithm, recall, AP (Average Precision), and mAP (mean Average Precision) of the algorithm were measured with a degree of machine learning. Experimental results show that mAP, precision, and recall are improved by 10%, 6.8%, and 16.4%, respectively, when YOLO v3 is fitted with 4000 training dataset and 500 testing dataset which were collected through online search and is trained additionally with 1200 dataset collected from the stereo camera on AGV.

A comparative study on the characteristics of each version of object detection model YOLO (객체탐지모델 YOLO의 버전별 특성 비교 연구)

  • Joon-Yong Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.75-78
    • /
    • 2023
  • 본 논문은 객체탐지 모델 중 주류를 이루고 있는 YOLO의 v1부터 v8까지의 특성을 비교 분석하여 각각의 버전에 최적화할 수 있는 모델에 대한 연구이다. 연구 결과 v1, v2는 정확성이 최우선인 모델에 적합하다. 반면, v3, v4는 속도가 우선인 모델에 적합하다. 또한 v5, v6는 정확도와 속도 사이의 균형이 필요한 모델에 적합하다는 결론을 얻었다. v7, v8은 메모리 및 컴퓨팅 성능에 제약이 있는 경우 주로 적용이 가능하며, 적은 연산과 저 메모리 사용으로 객체를 탐지하여 포즈추정이나 객체 추적 등을 적용할 모델에 적합하다는 결과를 확인하였다.

  • PDF

Proposal of CCTV Storage Space Securing Model using YOLO v3 Library (YOLO v3 라이브러리를 이용한 CCTV 저장공간 확보 모델 제안)

  • Kim, Seong-Ik;Kim, Hwangrae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.105-106
    • /
    • 2022
  • 본 논문에서는 YOLO v3 라이브러리를 이용하여 CCTV 저장 공간을 확보하는 모델을 제안한다. 사회안전망을 구축하기 위해 CCTV 설치가 확대되고, 그에 따라 많은 CCTV가 운영됨에 있어 저장 공간이 부족한 현상이 늘고 있다. 이에 본 논문에서는 학습된 데이터 셋을 활용하여 CCTV 영상파일의 프레임을 확인하여 움직임이 있는 객체가 있는지 판단하고, 움직임이 감지되는 프레임 영상을 저장한다. 제안 모델을 적용하여 테스트 한 결과 원본 데이터 크기보다 결과 데이터 크기가 85% 감소됨을 확인하였다. 인적이 드문 곳에 설치된 CCTV의 경우 제안 모델을 적용할 경우, 저장 공간의 관리 및 운영이 용이해질 것으로 기대할 수 있다.

  • PDF

YOLO, EAST : Comparison of Scene Text Detection Performance, Using a Neural Network Model (YOLO, EAST: 신경망 모델을 이용한 문자열 위치 검출 성능 비교)

  • Park, Chan Yong;Lim, Young Min;Jeong, Seung Dae;Cho, Young Heuk;Lee, Byeong Chul;Lee, Gyu Hyun;Kim, Jin Wook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.115-124
    • /
    • 2022
  • In this paper, YOLO and EAST models are tested to analyze their performance in text area detecting for real-world and normal text images. The earl ier YOLO models which include YOLOv3 have been known to underperform in detecting text areas for given images, but the recently released YOLOv4 and YOLOv5 achieved promising performances to detect text area included in various images. Experimental results show that both of YOLO v4 and v5 models are expected to be widely used for text detection in the filed of scene text recognition in the future.

A model to secure storage space for CCTV video files using YOLO v3

  • Seong-Ik, Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.65-70
    • /
    • 2023
  • In this paper, we propose a CCTV storage space securing model using YOLO v3. CCTV is installed and operated in various parts of society for disasters, disasters and safety such as crime prevention, fire prevention, and monitoring, and the number of CCTV is increasing and the quality of the video quality is improving. Due to this, as the number and size of image files increase, it is difficult to cope with the existing storage space. In order to solve this problem, we propose a model that detects specific objects in CCTV images using YOLO v3 library and deletes unnecessary frames by saving only the corresponding frames, thereby securing storage space by reducing the size of the image file, and thereby Periodic images can be stored and managed. After applying the proposed model, it was confirmed that the average image file size was reduced by 94.9%, and it was confirmed that the storage period was increased by about 20 times compared to before the application of the proposed model.

YOLO Model FPS Enhancement Method for Determining Human Facial Expression based on NVIDIA Jetson TX1 (NVIDIA Jetson TX1 기반의 사람 표정 판별을 위한 YOLO 모델 FPS 향상 방법)

  • Bae, Seung-Ju;Choi, Hyeon-Jun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.467-474
    • /
    • 2019
  • In this paper, we propose a novel method to improve FPS while maintaining the accuracy of YOLO v2 model in NVIDIA Jetson TX1. In general, in order to reduce the amount of computation, a conversion to an integer operation or reducing the depth of a network have been used. However, the accuracy of recognition can be deteriorated. So, we use methods to reduce computation and memory consumption through adjustment of the filter size and integrated computation of the network The first method is to replace the $3{\times}3$ filter with a $1{\times}1$ filter, which reduces the number of parameters to one-ninth. The second method is to reduce the amount of computation through CBR (Convolution-Add Bias-Relu) among the inference acceleration functions of TensorRT, and the last method is to reduce memory consumption by integrating repeated layers using TensorRT. For the simulation results, although the accuracy is decreased by 1% compared to the existing YOLO v2 model, the FPS has been improved from the existing 3.9 FPS to 11 FPS.

Development of AI Systems for Counting Visitors and Check of Wearing Masks Using Deep Learning Algorithms (딥러닝 알고리즘을 활용한 출입자 통계와 마스크 착용 판별 인공지능 시스템)

  • Cho, Won-Young;Park, Sung-Leol;Kim, Hyun-Soo;Yun, Tae-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.285-286
    • /
    • 2020
  • 전 세계적으로 유행하는 COVID-19(코로나19)로 인해 사람들은 대면 접촉을 피하게 되었고, 전염성이 높은 이유로 마스크의 착용이 의무화되고 있고, 이를 검사하는 업무가 증가하고 있다. 그래서, 인공지능 기술을 통해 업무를 도와줄 수 있는 출입자 통계와 출입자 마스크 착용 검사를 할 수 있는 시스템이 필요하다. 이를 위해 본 논문에서는 딥러닝 알고리즘을 활용한 출입자 통계와 마스크 착용 판별 시스템을 제시한다. 또한, 실시간 영상인식에 많이 활용되고 있는 YOLO-v3와 YOLO-v4, YOLO-Tiny 알고리즘을 데스크탑 PC와 Nvidia사의 Jetson Nano에 적용하여 알고리즘별 성능 비교를 통해 적합한 방법을 찾고 적용하였다.

  • PDF

ANALYSIS OF THE FLOOR PLAN DATASET WITH YOLO V5

  • MYUNGHYUN JUNG;MINJUNG GIM;SEUNGHWAN YANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • This paper introduces the industrial problem, the solution, and the results of the research conducted with Define Inc. The client company wanted to improve the performance of an object detection model on the floor plan dataset. To solve the problem, we analyzed the operational principles, advantages, and disadvantages of the existing object detection model, identified the characteristics of the floor plan dataset, and proposed to use of YOLO v5 as an appropriate object detection model for training the dataset. We compared the performance of the existing model and the proposed model using mAP@60, and verified the object detection results with real test data, and found that the performance increase of mAP@60 was 0.08 higher with a 25% shorter inference time. We also found that the training time of the proposed YOLO v5 was 71% shorter than the existing model because it has a simpler structure. In this paper, we have shown that the object detection model for the floor plan dataset can achieve better performance while reducing the training time. We expect that it will be useful for solving other industrial problems related to object detection in the future. We also believe that this result can be extended to study object recognition in 3D floor plan dataset.