본 연구는 화재진압 및 피난활동을 지원하는 딥러닝 기반의 알고리즘 개발에 관한 기초 연구로 선박 화재 시 연기감지기가 작동하기 전에 검출된 연기 데이터를 분석 및 활용하여 원격지까지 연기가 확산 되기 전에 연기 확산거리를 예측하는 것이 목적이다. 다음과 같은 절차에 따라 제안 알고리즘을 검토하였다. 첫 번째 단계로, 딥러닝 기반 객체 검출 알고리즘인 YOLO(You Only Look Once)모델에 화재시뮬레이션을 통하여 얻은 연기 영상을 적용하여 학습을 진행하였다. 학습된 YOLO모델의 mAP(mean Average Precision)은 98.71%로 측정되었으며, 9 FPS(Frames Per Second)의 처리 속도로 연기를 검출하였다. 두 번째 단계로 YOLO로부터 연기 형상이 추출된 경계 상자의 좌표값을 통해 연기 확산거리를 추정하였으며 이를 시계열 예측 알고리즘인 LSTM(Long Short-Term Memory)에 적용하여 학습을 진행하였다. 그 결과, 화재시뮬레이션으로부터 얻은 Fast 화재의 연기영상에서 경계 상자의 좌표값으로부터 추정한 화재발생~30초까지의 연기 확산거리 데이터를 LSTM 학습모델에 입력하여 31초~90초까지의 연기 확산거리 데이터를 예측하였다. 그리고 추정한 연기 확산거리와 예측한 연기 확산거리의 평균제곱근 오차는 2.74로 나타났다.
본 논문에서는 영상 속 인물을 탐지하고 얼굴 영역을 검출하는 방법을 제안하며, 이 방법은 2가지 작업으로 구성한다. 첫째, 서로 다른 두 명의 인물을 구분하여 프레임 내 인물의 얼굴 위치를 탐지한다. 빠른 탐지를 위해 영상 내 물체를 실시간으로 검출하는 YOLO(You Only Look Once)를 이용하여 얼굴의 위치를 탐지하고 객체탐지상자로 나타낸다. 둘째, 객체탐지상자를 바탕으로 정확한 얼굴 면적을 검출하기 위해 3가지 영상처리 방법을 제시한다. 각 방법은 검출 도형으로 추정한 영역에서 추출한 HSV 값을 이용하여 인물의 얼굴 영역을 검출하였으며 검출 도형의 크기와 모양을 바꾸어 각 방법의 정확도를 비교하였다. 각 얼굴 검출 방법은 신뢰성 검증을 위해 비교 데이터와 영상처리 데이터로 비교 및 분석하였다. 그 결과 원형, 직사각형, 분할 직사각형 방법 중 분할된 직사각형 방법을 사용했을 때 87%로 가장 높은 정확도를 달성하였다.
본 논문에서는 영상 데이터와 센서 데이터를 활용한 딥러닝 기반의 반려동물 이상행동 탐지 서비스를 제안한다. 최근 반려동물 보유 가구의 증가로 인해 기존 푸드 및 의료 중심의 반려동물 시장에서 인공지능을 더한 펫테크(Pet Tech) 산업이 성장하고 있다. 본 연구에서는 인공지능을 통한 반려동물의 건강관리를 위해 영상 및 센서 데이터를 활용한 딥러닝 모델을 기반으로 반려동물의 행동을 분류하고, 이상행동을 탐지하였다. 자택의 CCTV와 직접 제작한 펫 웨어러블 디바이스를 활용하여 반려동물의 영상 데이터 및 센서 데이터를 수집하고, 모델의 입력 데이터로 활용한다. 행동의 분류를 위해 본 연구에서는 반려동물의 객체를 검출하기 위한 YOLO(You Only Look Once) 모델과 관절 좌표를 추출하기 위한 DeepLabCut을 결합하여 영상 데이터를 처리하였고, 센서 데이터를 처리하기 위해 각 센서 별 연관관계 및 특징을 파악할 수 있는 GAT(Graph Attention Network)를 활용하였다.
최근 지능형 교통 시스템의 발전에 따라 딥러닝을 기술을 적용한 다양한 기술들이 활용되고 있다. 도로를 주행하는 불법 차량 및 범죄 차량 단속을 위해서는 차량 종류를 정확히 판별할 수 있는 차종 분류 시스템이 필요하다. 본 연구는 YOLO(You Only Look Once)를 이용하여 이동식 차량 단속 시스템에 최적화된 차종 분류 시스템을 제안한다. 제안 시스템은 차량을 승용차, 경·소·중형 승합차, 대형 승합차, 화물차, 이륜차, 특수차, 건설기계, 7가지 클래스로 구분하여 탐지하기 위해 단일 단계 방식의 객체 탐지 알고리즘 YOLOv5를 사용한다. 인공지능 기술개발을 위하여 한국과학기술연구원에서 구축한 약 5천 장의 국내 차량 이미지 데이터를 학습 데이터로 사용하였다. 한 대의 카메라로 정면과 측면 각도를 모두 인식할 수 있는 차종 분류 알고리즘을 적용한 지정차로제 단속 시스템을 제안하고자 한다.
본 논문에서는 Robot Operating System(ROS) 기반의 모바일 매니퓰레이터(Manipulator)를 이용한 무인 배송 로봇 시스템을 구현하고 시스템 구현을 위해 사용된 기술에 대해 소개한다. 로봇은 엘리베이터를 이용해 건물 내부에서 자율주행이 가능한 모바일 로봇과 진공 펌프를 부착한 Selective Compliance Assembly Robot Arm(SCARA)-Type의 매니퓰레이터로 구성된다. 로봇은 매니퓰레이터에 부착된 카메라를 이용하여 이미지 분할과 모서리 검출을 통해 배송물을 들어올리기 위한 위치와 자세를 결정할 수 있다. 제안된 시스템은 스마트폰 앱 및 ROS와 연동된 웹서버를 통해 배송 현황을 조회하고 로봇의 실시간 위치를 파악할 수 있도록 사용자 인터페이스를 가지고 있으며, You Only Look Once(YOLO)와 Optical Character Recognition(OCR)을 통해 배송 스테이션에서 배송물과 주소지를 인식한다. 아울러 4층 건물 내부에서 진행한 배송 실험을 통해 시스템의 유효성을 검증하였다.
교차로에서의 우회전 교통사고가 지속적으로 발생하면서 우회전 교통사고에 대한 대책 마련이 촉구되고 있다. 이에 우회전 지역의 CCTV 영상에서의 객체 탐지를 통해 보행자의 유무를 탐지하고 이를 디스플레이에 경고 문구를 출력해 운전자에게 알리는 기술을 개발하였다. 객체 탐지 모델 중 하나인 YOLO(You Only Look Once) 모델을 이용하여 객체 탐지의 성능평가를 확인하고, 추가적인 후처리 알고리즘을 통해 오인식 문제 해결 및 보행자 확인 시 경고 문구를 출력하는 알고리즘을 개발 하였다. 보행자 혹은 객체를 인식하여 경고 문구를 출력하는 정확도는 82% 수준으로 측정되었으며 이를 통해 우회전 사고 예방에 기여할 수 있을 것으로 예상된다.
해안쓰레기 문제는 전 세계적으로 환경에 대한 심각한 위협이 되고 있다. 본 연구에서는 딥러닝과 원격탐사 기술을 활용하여 해안쓰레기의 모니터링 방법을 개선하고자 하였다. 이를 위해 You Only Look Once (YOLO)v8 모델을 이용한 객체 탐지 기법을 적용하여 우리나라 주요 해안쓰레기 11종에 대한 대규모 이미지 데이터셋을 구축하고, 실시간으로 쓰레기를 탐지 및 분석할 수 있는 프로토콜(Protocol)을 제안한다. 낙동강 하구에 위치한 신자도를 대상으로 드론 이미지 촬영 및 자체 개발한 YOLOv8 기반의 분석 프로그램을 적용하여 해안쓰레기 성상별 핫스팟을 식별하였다. 이러한 매핑(Mapping) 및 분석 기법의 적용은 해안쓰레기 관리에 효과적으로 활용될 수 있을 것으로 기대된다.
Although separation of touching pigs in real-time is an important issue for a 24-h pig monitoring system, it is challenging to separate accurately the touching pigs in a crowded pig room. In this study, we propose a separation method for touching pigs using the information generated from Convolutional Neural Network(CNN). Especially, we apply one of the CNN-based object detection methods(i.e., You Look Only Once, YOLO) to solve the touching objects separation problem in an active manner. First, we evaluate and select the bounding boxes generated from YOLO, and then separate touching pigs by analyzing the relations between the selected bounding boxes. Our experimental results show that the proposed method is more effective than widely-used methods for separating touching pigs, in terms of both accuracy and execution time.
현대 사회에서는 졸음으로 인한 사망사고와 재산피해 등이 해마다 막대하게 발생하고 있다. 이러한 피해를 줄이는 방법들은 사회 각계각층에서 많이 연구하고 있으며 특히, 자동차에서는 졸음운전 방지에 대한 연구가 활발하다. 본 논문에서는 요로(YOLO : You Only Look Once)를 이용하여 뜬눈과 감은 눈을 학습하는 아두이노 기반의 물총 발사를 수행하는 시스템으로써, 단순히 감은 눈의 지속 시간이 일정 시간을 초과하면 물총을 발사하는 졸음 방지 시스템을 제안한다. 본 시스템은 다양한 분야에 적용하여 사용할 수 있지만, 특히, 자동차에 적용 시 비싼 사양을 구매하지 않아도 되고 조금만 신경을 쓰면 아주 저렴한 비용으로도 졸음운전으로 인한 사고를 100% 줄일 수 있다. 또한, 회사별 각기 다른 사양들을 극복한 독립적 시스템이라고 할 수 있다.
Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
International Journal of Computer Science & Network Security
/
제24권5호
/
pp.53-63
/
2024
Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.