• Title/Summary/Keyword: YBCO thick film

Search Result 42, Processing Time 0.031 seconds

High-Ic YBCO thick film fabricated by the MOD process (MOD 공정으로 제조된 고임계전류 YBCO 후막)

  • Shin, Geo-Myung;Song, Kyu-Jung;Moon, Seung-Hyun;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.6-9
    • /
    • 2008
  • We have investigated the MOD process successfully for the fabrication of the YBCO thick film on the $LaAlO_3$(001) single crystalline substrate. The cracking problem in YBCO thick film, a serious problem in the conventional TFA-MOD method, could be overcome with a careful control of precursor materials. Thus coating solution was prepared for the YBCO thick film by using fluorine-free precursor material. The precursor solutions were coated on the LAO(001) single crystalline substrate using the dip coating method, calcined at the temperature up to $500^{\circ}C$, and fired at various high temperatures for 2 h in a reduced oxygen atmosphere. Optimally processed YBCO thick film exhibited high critical current($I_c$) over 200 A/cm-width at 77K in self-field.

EPD Thick Film Formation of Ceramic Powder Materials (세라믹 분말재료의 EPD 후막형성 기술)

  • Soh, Dea-Wha;Jeon, Yong-Woo
    • Journal of the Speleological Society of Korea
    • /
    • no.75
    • /
    • pp.49-54
    • /
    • 2006
  • Electrophoretic Deposition (EPD) is the most convenient technology to deposit natural or oxide powders of nonconductive materials in alcoholic suspension solution with adding electrolyte of iodine to form ceramic thick film on metal substrate under applied electric field with double electric layer between electrode and metal substrate. In this research work, the important parameters and technical ways were studied to form EPD thick films of typical oxide ceramics of Al2O3, YBCO and tourmaline powders.

Fabrication of HTS thick film using YBCO quenched powder (YBCO 급랭 시료를 이용한 고온초전도 후막 제작)

  • 홍세은;두호익;임성우;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.108-111
    • /
    • 2001
  • YBCO HTS thick films coated using powder, Y$_2$O$_3$+L, quenched over 1200$^{\circ}C$ was studied. Quenched powder was crushed and mixed well in order to obtain uniformly dispersed Y2ll. Also, the powder was prepared with various condition in other to acquire optimum micro structure. As a result, it was found that the quenched sample on 1300$^{\circ}C$, holding time of 30min, has a bettor characteristic than other sample. On the other hand, the effect of film thickness was investigated. We concluded that the initiate film thickness has to be over 150$\mu\textrm{m}$. Especially, it was found that the film coated over 3 times with 50$\mu\textrm{m}$ m was best quality.

  • PDF

Effect of the Buffered-template on the Property of YBCO Superconducting Film Deposited by MOCVD Method (MOCVD 법에 의해 제조된 YBCO 초전도 박막의 물성에 대한 완충층 템플릿의 영향)

  • Jun, Byung-Hyuk;Choi, Jun-Kyu;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • [$YBa_2Cu_3O_{7-x}$] thin films were deposited on various buffered-templates by a metal organic chemical vapor deposition(MOCVD). Three different templates of $CeO_2/YSZ/CeO_2/pure-Ni(CYC),\;CeO_2/YSZ/Y_2O_3/Ni-3at.%W(YYC)$ and $CeO_2/IBAD-YSZ$/stainless steel were used. The Ni and Ni-W alloy tapes were biaxially textured by cold rolling and annealing heat treatment. The dense YBCO films were grown on both the IBAD and YYC templates with no microcrack, while the YBCO films on the CYC templates were grown with the formation of microcracks and NiO. The YBCO film on the YYC template showed the higher $I_c$ than that on CYC template. Especially, the IBAD templates with a thin $CeO_2$(type I) and thick $CeO_2$(type II) top layer were used to compare the deposition nature of the YBCO on them. Comparing the current property of the YBCO films on IBAD templates, the YBCO film deposited on thick $CeO_2$ layer was better than the film on thin $CeO_2$ layer.

  • PDF

Superconducting Properties of Shaky-aligned EPD Thick Film of YBCO Tape (진동정렬 EPD YBCO 후막테이프의 초전도 특성 개선)

  • Soh, Dea-Wha;Cho, Yong-Joon;Park, Seong-Beom;Jeon, Yong-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.111-114
    • /
    • 2003
  • In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternating field vertically to the EPD field has been developed for the first time and applied to the electrophoretic deposition process. The applied alternating electric field caused a force to be exerted on each YBCO particle and resulted in a shaking of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. The usual commercial electrical power was used for the vertically applied alternating voltage and the induced electric field was 25-120 V/cm at 60Hz. The thick film fabricated by the method developed in this paper showed better surface uniformity without crack and porosity and improved film characteristics such as critical temperature ($T_{c,zero}$ : 90 K) and critical current density ($2354\;A/cm^2$). Therefore, it is expected that the shaky-aligned electrophoretic deposition method can be used to fabricate superconductor films through a simpler process and at less expense.

  • PDF

Fabrication of YBCO Superconducting Thick Film by Use of Lateral Shaky Field Assisted EPD Method (측면진동보조전계 전기영동 전착방식을 적용한 YBCO 초전도 후막의 제작)

  • 소대화;전용우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1041-1046
    • /
    • 2003
  • In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternating field vertically to the EPD field has been developed for the first time and applied to the electrophoretic deposition process. The applied alternating electric field, so called Shaky Alternating Assisted Field, caused a force to be exerted on each YBCO particle and resulted in a shaking of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. The usual commercial electrical power was used for the vertically applied alternating voltage and the induced electric field was 25-120 V/cm at 60Hz. The thick film fabricated by the method developed in this paper showed better surface uniformity without crack and porosity and improved film characteristics such as critical temperature (Tc,zero = 90 K) and critical current density (2354 A/$\textrm{cm}^2$), Therefore, it is expected that the shaky-aligned electrophoretic deposition method can be used to fabricate superconductor films through a simpler process and at less expense.

Preparation of YBCO Superconducting Wire by Electrophoresis (전기영동법에 의한 YBCO 초전도 선재 제조 (I))

  • 박정철;이명매;소대화;단옥교
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.570-574
    • /
    • 1999
  • In this paper, by using the electrophoresis, preparation of YBCO superconducting wire deposited on metal Ag base wire was studied with its Properties. YBCO Powder could be prepared by solid state reactions with calcining and sintering processes. Superconducting wire prepared on metal Ag wire used as cathode of deposition base could be also fabricated in the YBCO/acetone-dispersed solution to obtain several tens of re thick films. And then it could be used as superconducting wire for measurement after calcination, sintering and oxygen absorption processes. In the process of film deposition, a catalyst I$_2$added into the suspension solution was very useful for preparing thick film of YBCO, and BaF$_2$ of additive material was also necessary for preparing crack-free wire of YBCO superconductor. As a result, YBCO superconducting wire added 2~3wt.% of BaF$_2$\ulcorner with catalyst, 12 had better deposition condition for uniform and dense YBCO wires, and critical current density, Jc was calculated at the value of 1,458A/$\textrm{cm}^2$(more than 10$^{3}$A/$\textrm{cm}^2$ ,77K, o[T]) of 30${\mu}{\textrm}{m}$ thick sample by 4 point prove method.

  • PDF

Influence of PEG addition on the surface properties of YBCO Thick Films (PEG 첨가에 의한 YBCO 후막 표면 변화)

  • Soh, Dea-Wha;Jeon, Yong-Woo;Cho, Yong-Joon;Korobova, Natalya
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.53-56
    • /
    • 2003
  • The properties of YBCO thick film coated on Ag wire with YBCO powder is deeply affected by cracking on its surface which was deposited in organic solution by electrophoretic method. YBCO superconducting thick films were prepared on Ag wire$({\Psi}0.8mm)$ by electrophoresis in acetone with added PEG (Poly-Ethylene Glycol, 3% in Acetone), 1ml for being crack-free. The surface properties of YBCO superconducting wire was evidently improved with adding PEG. Added PEG which molecular weight is 600, 1000, 3400 was affected with variation of deposition voltages to the surface properties of samples. As a result, with adding PEG (its molecular weight is 3400), YBCO superconducting wire was better on its surface properties.

  • PDF

Property Improvement of YBCO Thick films by EPD with Addition of PEG (PEG 첨가에 의한 YBCO 전착후막의 특성 향상)

  • 소대화;전용우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1125-1130
    • /
    • 2003
  • The electrophoretic deposition method using the suspension solution with additives under the electric potential was applied for the fabrication of YBCO superconductor wire. This method was able to simplify the fabrication facilities, and produce an uniform and dense thick film. To improve the critical current density of deposited films, the additive PEGs(Poly Ethylene Glycole) with the molecular weight of 600, 1000 and 3400 were used as chemical binders for the suspension solution. The organic additive (PEG) showed better effects to the properties of YBCO superconductor wire. The PEG improved the adhesion between superconductor particles and suppressed the crack on the surface, which enhanced the surface uniformity and density of YBCO deposited film. It was found that acetone suspension solution showed better deposition properties than the others. The samples fabricated in the solution with the additive, 8 vol.% of 1% PEG(1000), showed the highest critical current density measured as 2300∼2400 A/$\textrm{cm}^2$ at 77 K, 0 T.

Effects on Suspension Solution for Electrophoretic Superconducting Thick-film Wire (전기영동 초전도 후막선재의 현탁용매 영향)

  • 소대화;박정철;이영매;조용준;코로보바
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.81-84
    • /
    • 1999
  • For the research of the effects on suspension solution with YBCO and BSCCO for elcectrophoretic deposition to prepare superconducting thick-film wire, it was investigated that the preheating technique for the superconducting powders in vacuum system was used with various solvent solutions of acetone, ethanol, toluene and buthanol for electrophoresis. As a result it was useful to remove the influence of remaining and adsorbed solvent solution which was existed between and on the particle surfaces when the specimens of superconducting wire by electrophoresis were treated in vacuum of 10$\^$-3/ Torr and temperature around 200$^{\circ}C$ in bell-jar system. From the prepared superconducting wire samples, the critical current density, Jc was measured by 4-point prove method in liquid N$_2$ at the value of 10$\^$3/ to 10$\^$4/ A/$\textrm{cm}^2$, respectively, for the YBCO and BSCCO superconducting wires.

  • PDF