• Title/Summary/Keyword: YBCO single crystal

Search Result 68, Processing Time 0.038 seconds

Method of simultaneous synthesize for Y123 and Y211 and fabrication of YBCO single crystal (Y123와 Y211분말의 동시 합성과 YBCO 초전도 단결정 제조)

  • 안재원;최희락;한영희;한상철;정년호;성태현
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.224-233
    • /
    • 2002
  • A common YBCO powder has been made from a mixture of Y123 and Y211 that heated at different temperatures, respectively. The synthesis temperature of Y211 is lower than Y123. If Y211 has been heated as a synthesis temperature of Y123, a particle size of it may be very coarse. It exist as one of main defects for superconductor. But We simultaneously synthesize a YBCO(its composition is (Y123+0.4Y211)+$lwt%CeO_2$) using polymeric complex method. In the YBCO, the Y123 is synthesized lower temperature than other methodes, and its crystal structure is orthorombic. For measurement of these superconducting properties, we fabricated a YBCO single crystal. The manufactured YBCO single crystal is measured a magnetic distribution device using 0.5Tesla magnet and trapped magnet fields in it are 0.2Tesla.

  • PDF

Deposition condition of YBCO films by continuous source supplying MOCVD method (연속 연료공급식 MOCVD법으로 증착시킨 YBCO 박막의 증착조건)

  • Kim Ho-Jin;Joo Jin-ho;Choi Jun-Kyu;Jun Byung-Hyuk;Kim Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.6-11
    • /
    • 2004
  • YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) films were deposited on MgO(100) and SrTiO$_3$(100) single crystal substrates by cold-wall type MOCVD method using continuous source supplying system. Under the deposition temperature of 740∼76$0^{\circ}C$, c-axis oriented YBCO films were obtained. In case of the YBCO films deposited on MgO (100) single crystal substrate, the critical temperature (T$_{c}$) was under 81 K regardless of the deposition conditions, whereas T$_{c}$ of the YBCO films deposited on SrTiO$_3$(100) single crystal substrate was 83∼84 K. The critical current (I$_{c}$) of the YBCO film deposited on SrTiO$_3$(100) single crystal substrate for 30 min was 49 A/cm-width and the critical current density (J$_{c}$) was 0.82 MA/$\textrm{cm}^2$ to film thickness of 0.6 ${\mu}{\textrm}{m}$. I$_{c}$ increased to 84.4 A/cm-width as the deposition time increased to 50 min, but J$_{c}$ decreased to 0.53 MA/$\textrm{cm}^2$ to film thickness of 1.8 ${\mu}{\textrm}{m}$.rm}{m}$.

Fabrication of a large grain YBCO bulk superconductor by homo-seeding melt growth method

  • Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.35-40
    • /
    • 2022
  • To fabricate large grain YBCO bulk superconductors by melt process, Sm123 single crystal with a high melting point are mostly used as seeds. However, it also uses Y123 film deposited on MgO single crystal substrate. This study investigated the growth behavior of the Y123 grain during a melt process when single grain YBCO bulk was used as a seed. Single grain Y123 bulk was grown when the seed size was small. When the seed size was relatively large, multiple grains were grown but the grains were still large. Y123 seed crystal was completely decomposed during high temperature anneal at 1040℃ and new Y123 crystals were nucleated during a slow cooling stage below a peritectic temperature. Thereafter, newly formed Y123 crystals from the seed area are thought to grow into the Y1.8 powder compact. The crystallographic orientations of newly nucleated Y123 grains are independent of the crystallographic orientation of Y123 seed. It is thought that the crystallographic orientation of newly nucleated Y123 crystal can be controlled by using Y211-free Y123 single crystal as a seed of homo-seeding melt growth.

A Fabrication of YBCO Single Crystal using Infiltration and Growth Method (용융침투성장법을 이용한 YBCO 단결정 제조)

  • Han, Sang-Chul;Jeong, Neyon-Ho;Han, Young-Hee;Sung, Tae-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.550-554
    • /
    • 2007
  • Large and single-grain Y-Ba-Cu-O(YBCO) bulk superconductors have been fabricated by using a seeded infiltration and growth method. $Y_2BaCuO_5$(Y211) precursor pellets and $YBa_2Cu_3O_x$(Y123) liquid source pellets were prepared using commercial powder and were processed by infiltration and growth method to achieve low pore and high trapped field property. The superconductor properties of the single crystal are measured and analyzed in relation with the density and size of the Y211 particle in the Y123 matrix. An optimum processing condition is suggested based on the analyzed results.

Fabrication of Bulk High-Tc Superconductor (벌크형 고온 초전도 합성)

  • Lee, Sang Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.333-336
    • /
    • 2021
  • Oxide YBCO bulk superconductors are manufactured using the melt process. Because seed crystal growth method utilizes a slow-spreading layer-by-layer reaction, a long-term heat treatment is required to manufacture a single-crystal specimen of several cm. In this study, the melt process method was applied to compensate for the shortcomings of the seed crystal growth method. The thickness of the upper and lower pellets of the YBCO bulk was molded to 40 mm, and YBCO superconductor was produced by heat treatment. The measurement results of capture magnetism was in line with the literature. This results in a relationship that the higher the growth of Y211 particle in the YBCO, the higher the superconducting properties. We analyzed the YBCO superconductor, focusing on the Y2BaCuO5 particle distribution.

Growth of Superconductor YBa2Cu3O7-x Single Crystal by Flux Method (Flux법에 의한 초전도체 YBa2Cu3O7-x 단결정 육성)

  • 오근호;김호건;명중재
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.48-54
    • /
    • 1990
  • YBa2Cu3O7-x(=YBCO) single crystals were grown by flux method and the growing process of crystals was investigated. YBCO and 3BaO-7CuO composition powders were mixed by the ratio of 25 : 75(wt%), and the mixtures were melted at 105$0^{\circ}C$ in a electric furnace with no temperature-gradient. Then the melt was cooled at a rate 2-1$0^{\circ}C$/h in the above furnace. YBCO single crystal plate with average size of $1.5\times$2.0$\times$0.1㎣ were obtained in the cavities between crucible and solidified ingot, and the single crystals were oriented to <001> direction. The ingots of flux parts were analyzed by XRD and EDS for the purpose of presuming the growing process of the crystals. It was assumed that the divorced eutectic reaction, by which YBCO crystals were grown first and then BaCuO2 and CuO crystals, occured in the case of cooling rate faster than 2$^{\circ}C$/h. When the cooling rate was 2$^{\circ}C$/h, it was assumed that quasi-equilibrium eutectic reaction occured, so that YBCO, BaCuO2 and CuO crystals were grown at the same time.

  • PDF

The Improvement of MTG Process for Preparation of YBCO superconductor

  • Fan, Zhanguo;Shan, Yuqiao;Soh, Daewha
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1996.11a
    • /
    • pp.174-176
    • /
    • 1996
  • In the YBCO matrix, 10wt.% Y$_2$BaCuO$\_$5/ (211 phase) was added, the final 211 content of YBCO made by MTG process could reach about 20wt.% which was the optimum value for the critical current density. And also 10wt.% Ag was added in the matrix of YBCO, which was nearly about the saturate solubility of silver in textured YBCO. SmBaCuO crystal was grown by the melted-condensed process. A 5${\times}$5${\times}$2㎣ single crystal of SmBaCuO was used to be the seed in the preparation of YBCO. It was proved the orientation of YBCO was the same as the orientation of the SmBaCuO seed. The oxygen absorption of bulk oriented YBCO was studied and the heat treatment of oxygen absorption would be in flowing oxygen, at 400$^{\circ}C$ for about 24 hours. the magnetic hysteresis loops were measured by Vibrating Smaple Magnetometer and the J$\_$c/ was calcuated by means of Bean's model.

  • PDF

Fabrication of a high magnetization YBCO bulk superconductor by a bottom-seeded melt growth method

  • Hong, Yi-Seul;Park, Soon-dong;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.19-23
    • /
    • 2019
  • A large grain YBCO bulk superconductor is fabricated by the top-seeded melt growth (TSMG) method. In the TSMG process, the seed crystal is placed on the top surface of a partially melted compact and therefore the seed crystal is frequently tilted during the melt process due to intrinsic unstable nature of Y211 particle +liquid phase mixture. In this work, we report the successful growth of single-domain YBCO bulk superconductors by a bottom-seeded melt growth (BSMG) method. Investigations on the trapped magnetic field and the microstructures of the synthesized specimens show that a bottom-seeded melt growth method has hardly affected on the crystal growth behavior, the microstructure development and the magnetic properties of the large grain YBCO bulk superconductors. The bottom-seeded melt growth method is clearly beneficial for the stable control of seed orientation through the melt process for the fabrication of a large grain YBCO bulk superconductor.

A study on the $YBa_{2}Cu_{3}O_{x}$ phase deposition by liquid aerosol PECVD (미립액상 분말에 의한 $YBa_{2}Cu_{3}O_{x}$ 초전도체의 PECVD 증착법)

  • 정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.229-237
    • /
    • 1996
  • The superconducting phase, $YBa_{2}Cu_{3}O_{x}$ (YBCO), was in-situ deposited on the single crystal MgO substrates, using an aerosol decomposition process in a cold plasma reactor. The solubility and decomposition temperature of the chemical precursors, and the vapor pressures of the solvents, were determined to be the factors crucial to achieving a stoichiometric, crystalline YBCO phase. The deposition parameters for the YBCO phase were 0.3 to 2.7 kPa for the oxygen partial pressure and $800^{\circ}C$ to $940^{\circ}C$ for the substrate temperature. The optimum deposition conditions for the YBCO phase were observed along the CuO decomposition line.

  • PDF