• Title/Summary/Keyword: YB380

Search Result 4, Processing Time 0.02 seconds

Isolation of Novel Alkalophilic Bacillus alcalophilus subsp. YB380 and the Characteristics of Its Yeast Cell Wall Hydrolase

  • Yeo, Ik-Hyun;Han, Suk-Kyun;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.501-508
    • /
    • 1998
  • An alkalophilic mi.croorganism (strain YB380), which produces yeast cell wall hydrolase extracellulary, was isolated from Korean soil. The rod-shaped cells were 0.3~0.4 by 2~4${\mu}{\textrm}{m}$ long, motile, aerobic, gram-positive, and spore-forming. The color of the colony was light yellow. The temperature range for growth at pH 9.0 was 25 to $45{\circ}C, with optimum growth at $35{\circ}C. The pH range for growth at $35{\circ}C was 8 to 11 with an optimum pH of 9.0. Therefore, the strain YB380 is an obligate alkalophile. The 16S rRNA of strain YB380 has a 99% sequence similarity with that of Bacillus alcalophilus. On the basis of physiological properties, cell wall fatty acid composition, and phylogenetic analysis, we propose that the isolated strain is Bacillus alcalophilus. The yeast cell wall hydrolase from Bacillus alcalophilus subsp. YB380 has been purified and partially characterized. The molecular weight was estimated to be 27,000 daltons with an optimum temperature and pH of $60{\circ}C and 9.0, respectively. The N-terminal amino acid sequence of the enzyme was analyzed as Gln- Thr- Val- Pro- Trp- Gly- Ile- Asn- Arg- Val.

  • PDF

Linewidth Reduction of a Yellow Laser by a Super-cavity and the Measurement of the Cavity Finesse (초공진기를 이용한 노란색 레이저의 선폭 축소 및 초공진기의 예리도 측정)

  • Lee, Won-Kyu;Park, Chang-Yong;Park, Sang-Eon;Ryu, Han-Young;Yu, Dai-Hyuk;Mun, Jong-Chul;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.123-128
    • /
    • 2010
  • Sum frequency generation was utilized to obtain a yellow laser with the wavelength of 578.4 nm for a probe laser of an Yb lattice clock. The output of an Nd:YAG laser with wavelength of 1319 nm and that of an Yb-fiber laser with wavelength of 1030 nm were passed through a waveguided periodically-poled lithium niobate (WG-PPLN) for sum frequency generation. It is required that the probe laser has a linewidth of the order of 1 Hz to fully resolve the Yb lattice clock transition. Thus, the linewidth of the probe laser was reduced by stabilizing the frequency to a super-cavity. This was made of ULE with a low thermal expansion coefficient, and was mounted on an active vibration-isolation table at the optimal point for the reduced sensitivity to vibration. Also, this was installed in a vacuum chamber, and the temperature was stabilized to 1 mK level. This system was installed in an acoustic enclosure to block acoustic noise. The finesse of the super-cavity was measured to be 380 000 from the photon life time of the cavity.

Cloning and Expression of a Yeast Cell Wall Hydrolase Gene (ycl) from Alkalophilic Bacillus alcalophilus subsp. YB380

  • Ohk, Seung-Ho;Yeo, Ik-Hyun;Yu, Yun-Jung;Kim, Byong-Ki;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.508-514
    • /
    • 2001
  • A stuructural gene (ycl) encoding novel yeast cell wall hydrolase, YCL, was cloned from alkalophilic Bacillus alcalophilus subsp. YB380 by PCR, and transformed into E. coli JM83. Based on the N-terminal and internal amino acid sequences of the enzyme, primers were designed for PCr. The positive clone that harbors 1.8 kb of the yeast cell wall hydrolase gene was selected by the colony hybridization method with a PCR fragment as a probe. According to the computer analysis, this gene contained a 400-base-paired N-terminal domain of the enzyme. Based on nucletide homology of the cloned gene, a 850 bp fragment was amplified and the C-terminal domain of the enzyme was sequenced. With a combination of the two sequences, a full nucleotide sequence for YCL was obtained. This gene, ycl, consisted of 1,297 nucleotides with 27 nucleotides with 27 amino acids of signal sequence, 83 redundant amino acids of prosequence, and 265 amino acids of the mature protein. This gene was then cloned into the pJH27 shuttle vector and transformed into the Bacillus subtilis DB104 to express the enzyme. It was confirmed that the expressed cell wall hydrolase that was produced by Bacillus subtilis DB104 was the same as that of the donor strain, by Western blot using polyclonal antibody (IgY) prepared from White Leghorn hen. Purified yeast cell wall hydrolase and expressed recombinant protein showed a single band at the same position in the Western blot analysis.

  • PDF

Fabrication and Scintillation Characteristics of LiPO3 glass scintillators with the lanthanides activators (란탄계열 원소를 활성체로 첨가한 LiPO3 유리 섬광체의 제작과 섬광특성)

  • Whang, J.H.;Lee, J.M.;Jung, S.J.;Choi, S.H.;Sumarokov, S. Yu.
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.139-148
    • /
    • 2003
  • $LiPO_3$ glass scintillators were fabricated, and lanthanides(except Pm) oxides or chlorides were used as an activator. For the fabrication of $LiPO_3$ glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time are $950^{\circ}C$ and 90 min, respectively. It was found that Pr, Nd, Gd, Ho, Er, Tm, Yb and Lu do not work as activator; emission spectrums of samples with them were equal to those of samples without activators. In the case of samples with Europium, the peaks of emission spectrum of $Eu^{2+}$ and $Eu^{3+}$ were 420 nm and 620 nm respectively. And samples with $Ce^{3+}$ were about 380 nm, and $Tb^{3+}$ were about 550 nm. Glass scintillators with $Be^{3+}$, $Eu^{2+}$, and $Ce^{3+}$ were found to be more applicable to neutron detection. The result of neutron detection by Ra-Be sources showed that $Ce^{3+}$ was found to be the best activator of $LiPO_3$.