Browse > Article
http://dx.doi.org/10.5369/JSST.2003.12.3.139

Fabrication and Scintillation Characteristics of LiPO3 glass scintillators with the lanthanides activators  

Whang, J.H. (Dept. of Nuclear Eng., Kyung Hee Univ.)
Lee, J.M. (Dept. of Nuclear Eng., Kyung Hee Univ.)
Jung, S.J. (Dept. of Nuclear Eng., Kyung Hee Univ.)
Choi, S.H. (College of Electronics and Information & Ins. of Natural Sciences, Kyung Hee Univ.)
Sumarokov, S. Yu. (Institute for Single Crystals, Ukraine)
Publication Information
Journal of Sensor Science and Technology / v.12, no.3, 2003 , pp. 139-148 More about this Journal
Abstract
$LiPO_3$ glass scintillators were fabricated, and lanthanides(except Pm) oxides or chlorides were used as an activator. For the fabrication of $LiPO_3$ glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time are $950^{\circ}C$ and 90 min, respectively. It was found that Pr, Nd, Gd, Ho, Er, Tm, Yb and Lu do not work as activator; emission spectrums of samples with them were equal to those of samples without activators. In the case of samples with Europium, the peaks of emission spectrum of $Eu^{2+}$ and $Eu^{3+}$ were 420 nm and 620 nm respectively. And samples with $Ce^{3+}$ were about 380 nm, and $Tb^{3+}$ were about 550 nm. Glass scintillators with $Be^{3+}$, $Eu^{2+}$, and $Ce^{3+}$ were found to be more applicable to neutron detection. The result of neutron detection by Ra-Be sources showed that $Ce^{3+}$ was found to be the best activator of $LiPO_3$.
Keywords
Neutron detection; Glass scintillator;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Baccaro, R. DallIgna, P. Fabeni, M. Martini. J.A. Mares, F. Meinardi, M. Nikl, K. Nitsch, G.P. Pazzi, P. Polato C. Susini, A. Vedda, G. Zanella, R. Zannoni, Journal of Luminescence Vo1.87-89, pp.673-675, 2000   DOI   ScienceOn
2 William R. Leo, 'Techniques for Nuclear and Particle Physics Expweriments,' Springer-Verlag, NewYork, pp.197-199, 1987
3 V.A. Tarasov, N.I. Shevtsov, I.I. Mirenskaya, A.B. Blank, Nucl. Instr. and Meth. Vol.438, pp.577-580, 1999   DOI   ScienceOn
4 Shirigo Taniguchi, Masashi Takada, Takashi Nakamura, Nucl.Inst-r r. and Meth. Vol.460, pp.368-373, 2001   DOI   ScienceOn
5 Shigekazu Usuda, Nucl. Instr. and Meth. Vol.356, pp.334-338, 1995   DOI   ScienceOn
6 K. Binnemans, R. Van Deun, C.G orller-Warlang, J.L. Adam. Journal of Non-Crystalline Solids, Vol.238, pp.11-29, 1998   DOI   ScienceOn
7 V. Aruna, N. Sooraj Hussain, K. Rajamohan Reddy, et al., Material Letters, Vol.33, pp.201-206, 1998   DOI
8 V.Aruna, N. Sooraj Hussain, S. Buddhudu, Materials Research Bulletin Vo1.33, No. 1, pp.149-159, 1998   DOI   ScienceOn
9 A.B. Blank, N.I. Shevstov, I.I. Mirenskaya, Z.M. Nartova, Zhurn. Analit. Khimii. Vol.45 p.1724, 1980
10 N.I. Shevstov, A.B. Blank, I.I. Mirenskaya, Z.M. Nartova, Patent of Russian Federation No. 1,599,734, reg. 15 March, 1993
11 Renata Reisfeld, Michael Gaft, Tsiala Saridarov, Gerard Panczer, Marina Zeiner, Materials Letters Vol.45, pp.154-156, 2000   DOI   ScienceOn
12 J.B. Czirr, G.M. MacGillivray, R.R MacGillivray, P.J. Seddon, Nucl. Instr. and Meth. Vol.424, pp.15-19, 1999   DOI   ScienceOn
13 S.V. Godbole, J.S. Nagpal, A.G. Page, Radiation Measurements Vo1.32, pp.343-348, 2000   DOI   ScienceOn
14 L.A. Wraight, D.H.C. Harri,. P.A. Egelstaff, Nucl. Instr. and Meth. Vol.33, pp.181-193, 1965   DOI   ScienceOn
15 V.I. Arbuzov, N.Z. Andreeva, V.A. Vitenko, M.A, Milovidov, Radiation Measurements, Vol.25, No. 1-4, pp. 475-476, 1995   DOI   ScienceOn
16 G. Zanella, R. Zannoni, R.Dall'Igna, P. Polato, M. Bettinelli, Nucl. Instr. and Meth. Vol.359, pp.547-550. 1995   DOI   ScienceOn