DOI QR코드

DOI QR Code

Fabrication and Scintillation Characteristics of LiPO3 glass scintillators with the lanthanides activators

란탄계열 원소를 활성체로 첨가한 LiPO3 유리 섬광체의 제작과 섬광특성

  • Whang, J.H. (Dept. of Nuclear Eng., Kyung Hee Univ.) ;
  • Lee, J.M. (Dept. of Nuclear Eng., Kyung Hee Univ.) ;
  • Jung, S.J. (Dept. of Nuclear Eng., Kyung Hee Univ.) ;
  • Choi, S.H. (College of Electronics and Information & Ins. of Natural Sciences, Kyung Hee Univ.) ;
  • Sumarokov, S. Yu. (Institute for Single Crystals, Ukraine)
  • 황주호 (경희대학교 원자력공학과) ;
  • 정석준 (경희대학교 원자력공학과) ;
  • 신상원 (경희대학교 원자력공학과) ;
  • 최석호 (경희대학교 전자정보학부 및 자연과학종합연구원) ;
  • 수마로코프 (단결정연구소)
  • Published : 2003.05.30

Abstract

$LiPO_3$ glass scintillators were fabricated, and lanthanides(except Pm) oxides or chlorides were used as an activator. For the fabrication of $LiPO_3$ glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time are $950^{\circ}C$ and 90 min, respectively. It was found that Pr, Nd, Gd, Ho, Er, Tm, Yb and Lu do not work as activator; emission spectrums of samples with them were equal to those of samples without activators. In the case of samples with Europium, the peaks of emission spectrum of $Eu^{2+}$ and $Eu^{3+}$ were 420 nm and 620 nm respectively. And samples with $Ce^{3+}$ were about 380 nm, and $Tb^{3+}$ were about 550 nm. Glass scintillators with $Be^{3+}$, $Eu^{2+}$, and $Ce^{3+}$ were found to be more applicable to neutron detection. The result of neutron detection by Ra-Be sources showed that $Ce^{3+}$ was found to be the best activator of $LiPO_3$.

$LiPO_3$에 란탄계열의 원소를 활성체로 첨가하여 '$LiPO_3$:Lanthanides' 유리 섬광체를 제작하였다. 최적의 가열 조건에서 유리 섬광체를 제작하여 광발광(photoluminescence, PL) 특성을 분석하였다. 유리 섬광체의 투명도가 최적이 되는 온도 $950^{\circ}C$, 시간 90분의 조건에서 제작하였으며, 발광스펙트럼 측정 결과 란탄계열의 원소 중 Pr, Nd, Gd, Ho, Er, Tm, Yb, Lu은 고유의 발광 스펙트럼이 형성되지 않아 활성체로서의 적용이 불가능한 것으로 나타났다. $Eu^{2+}$$Eu^{3+}$의 중심파장은 각각 420 nm, 620 nm이였고, $Ce^{3+}$는 약 380 nm. $Tb^{3+}$는 약 550 nm 이였다. $Bi^{3+}$, $Eu^{2+}$, $Ce^{3+}$를 첨가한 $LiPO_3$ 유리 섬광체에 광전증배관을 결합하여 섬광검출기를 구성하여. Ra-Be 중성자 선원을 이용한 중성자 검출실험을 진행한 결과 $Ce^{3+}$를 첨가한 $LiPO_3$ 유리섬광체가 가장 좋은 효율을 보여주었다.

Keywords

References

  1. L.A. Wraight, D.H.C. Harri,. P.A. Egelstaff, Nucl. Instr. and Meth. Vol.33, pp.181-193, 1965 https://doi.org/10.1016/0029-554X(65)90040-6
  2. V.I. Arbuzov, N.Z. Andreeva, V.A. Vitenko, M.A, Milovidov, Radiation Measurements, Vol.25, No. 1-4, pp. 475-476, 1995 https://doi.org/10.1016/1350-4487(95)00175-E
  3. G. Zanella, R. Zannoni, R.Dall'Igna, P. Polato, M. Bettinelli, Nucl. Instr. and Meth. Vol.359, pp.547-550. 1995 https://doi.org/10.1016/0168-9002(95)00046-1
  4. J.B. Czirr, G.M. MacGillivray, R.R MacGillivray, P.J. Seddon, Nucl. Instr. and Meth. Vol.424, pp.15-19, 1999 https://doi.org/10.1016/S0168-9002(98)01295-9
  5. V.A. Tarasov, N.I. Shevtsov, I.I. Mirenskaya, A.B. Blank, Nucl. Instr. and Meth. Vol.438, pp.577-580, 1999 https://doi.org/10.1016/S0168-9002(99)00807-4
  6. Shirigo Taniguchi, Masashi Takada, Takashi Nakamura, Nucl.Inst-r r. and Meth. Vol.460, pp.368-373, 2001 https://doi.org/10.1016/S0168-9002(00)01075-5
  7. Shigekazu Usuda, Nucl. Instr. and Meth. Vol.356, pp.334-338, 1995 https://doi.org/10.1016/0168-9002(94)01212-1
  8. K. Binnemans, R. Van Deun, C.G orller-Warlang, J.L. Adam. Journal of Non-Crystalline Solids, Vol.238, pp.11-29, 1998 https://doi.org/10.1016/S0022-3093(98)00540-7
  9. V. Aruna, N. Sooraj Hussain, K. Rajamohan Reddy, et al., Material Letters, Vol.33, pp.201-206, 1998 https://doi.org/10.1016/S0167-577X(97)00093-1
  10. V.Aruna, N. Sooraj Hussain, S. Buddhudu, Materials Research Bulletin Vo1.33, No. 1, pp.149-159, 1998 https://doi.org/10.1016/S0025-5408(97)00184-0
  11. A.B. Blank, N.I. Shevstov, I.I. Mirenskaya, Z.M. Nartova, Zhurn. Analit. Khimii. Vol.45 p.1724, 1980
  12. N.I. Shevstov, A.B. Blank, I.I. Mirenskaya, Z.M. Nartova, Patent of Russian Federation No. 1,599,734, reg. 15 March, 1993
  13. Renata Reisfeld, Michael Gaft, Tsiala Saridarov, Gerard Panczer, Marina Zeiner, Materials Letters Vol.45, pp.154-156, 2000 https://doi.org/10.1016/S0167-577X(00)00096-3
  14. S.V. Godbole, J.S. Nagpal, A.G. Page, Radiation Measurements Vo1.32, pp.343-348, 2000 https://doi.org/10.1016/S1350-4487(00)00062-7
  15. S. Baccaro, R. DallIgna, P. Fabeni, M. Martini. J.A. Mares, F. Meinardi, M. Nikl, K. Nitsch, G.P. Pazzi, P. Polato C. Susini, A. Vedda, G. Zanella, R. Zannoni, Journal of Luminescence Vo1.87-89, pp.673-675, 2000 https://doi.org/10.1016/S0022-2313(99)00353-1
  16. William R. Leo, 'Techniques for Nuclear and Particle Physics Expweriments,' Springer-Verlag, NewYork, pp.197-199, 1987