• Title/Summary/Keyword: YAlO3

Search Result 23, Processing Time 0.029 seconds

Effect of WO3 or Ga2O3 Addition on the Phase Evolution and Properties of Y2O3-Doped AlN Ceramics (Y2O3-AlN 세라믹스의 생성상 및 물성에 미치는 WO3 및 Ga2O3의 첨가효과)

  • Shin, Hyunho;Yoon, Sang-Ok;Kim, Shin;Hwang, Injoon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.206-211
    • /
    • 2013
  • The effect of a $WO_3$ or $Ga_2O_3$ addition on the densification, phase evolution, optical reflectance, and elastic and dielectric properties of $Y_2O_3$-doped AlN ceramics sintered at $1800^{\circ}C$ for 3 h is investigated. The investigated compositions of the additives are 4.5 wt% $Y_2O_3$ (YA), 3.5 wt% $Y_2O_3$-1.0 wt% $Ga_2O_3$ (YGA), and 3.5 wt% $Y_2O_3$-1.0 wt% $WO_3$ (YWA). $YAlO_3$ and $Y_4Al_2O_9$ form as the secondary phases in all of the investigated compositions, whereas $W_2B$ appears additionally in the YWA. In the YGA, Ga is detected in the AlN grains, indicating that the dissolution of $Ga_2O_3$ into the AlN lattice occurs. The addition of $WO_3$ blackens the specimen more significantly than that of $Ga_2O_3$ does. In all of the investigated specimens, the linear shrinkage and the apparent density are above 20 percent and in the range of 3.34-3.37 $g/cm^3$, respectively. The elastic modulus, Poisson's ratio, the dielectric constant, and the dielectric loss are in the ranges of 335-368 GPa, 0.146-0.237, 8.60-8.63, $2.65-3.95{\times}10^{-3}$, respectively. The sinterability and the properties of $Y_2O_3$-doped AlN ceramics are not much altered by the addition of $WO_3$ or $Ga_2O_3$.

Thermal Development from Hybrid Gels of Compounds for Use in Fibre-Reinforced Oxide Ceramics

  • MacKenzie, Kenneth J.D.;Kemmitt, Tim;Meinhold, Richard H.;Schmucker, Martin;Mayer, Lutz
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.323-330
    • /
    • 1998
  • Mixed oxide compounds of potential usefulness for fibre coatings (hexagonal celsian, $BaAl_2Si_2O_8$ and lanthanum hexaluminate, $LaAl_{11}O_{18}$) or for matrix materials (yttrium aluminium garnet, $Y_3Al_5O_{12}$) were prepared by hybrid sol-gel synthesis and their thermal crystallisation was monitored by thermal analysis, X-ray diffraction and multinuclear solid state MAS NMR. All the gels convert to the crystalline phase below about $12200^{\circ}C$, via amorphous intermediates in which the Al shows and NMR resonance at 36-38 ppm sometimes ascribed to Al in 5-fold coordination. Additional information about the structural changes during thermal treatment was provided by $^{29}Si$, $^{137}Ba$ and $^{89}Y$ MAS NMR spectroscopy, showing that the feldspar framework of celsian begins to be established by about $500^{\circ}C$ but the Ba is still moving into its polyhedral lattice sites about $400^{\circ}C$ after the sluggish onset of crystallization. Lanthanum hexaluminate and YAG crystallise sharply at 1230 and $930^{\circ}C$ respectively, the former via $\gamma-Al_2O_3$, the latter via $YAlO_3$. Yttrium moves into the garnet lattice sites less than $100^{\circ}C$ after crystallisation.

  • PDF

Formation of Amorphous Oxide Layer on the Crystalline Al-Ni-Y Alloy

  • Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.173-176
    • /
    • 2013
  • The oxidation behavior of the crystallized $Al_{87}Ni_3Y_{10}$ alloy has been investigated with an aim to compare with that of the amorphous $Al_{87}Ni_3Y_{10}$ alloy. The oxidation at 873 K occurs as follows: (1) growth of an amorphous aluminum-yttrium oxide layer (~10 nm) after heating up to 873 K; and (2) formation of $YAlO_3$ crystalline oxide (~220 nm) after annealing for 30 hours at 873 K. Such an overall oxidation step indicates that the oxidation behavior in the crystallized $Al_{87}Ni_3Y_{10}$ alloy occurs in the same way as in the amorphous $Al_{87}Ni_3Y_{10}$ alloy. The simultaneous presence of aluminum and yttrium in the oxide layer significantly enhances the thermal stability of the amorphous structure in the oxide phase. Since the structure of aluminum-yttrium oxide is dense due to the large difference in ionic radius between aluminum and yttrium ions, the diffusion of oxygen ion through the amorphous oxide layer is limited thus stabilizing the amorphous structure of the oxide phase.