• Title/Summary/Keyword: YAlO3

Search Result 23, Processing Time 0.024 seconds

Synthesis of $Eu^{3+}$ activated $LnAlO_{3}$(Ln=Y and Gd) Phosphors by combusition method (연소법에 의한 $LnAlO_{3}$(Ln=Y and Gd):$Eu^{(3+)}$ 형광체의 합성)

  • Khatkar, S.P.;Taxak, V.B.;Han, Sang-Do;Kim, Byeong-Kwon;Jung, Young-Ho;Park, Jo-Yong;Liang, Y.;Myung, Kwang-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.116-119
    • /
    • 2002
  • A different route to the synthesis of $Eu^{3+}$ - activated matrices such as $YAlO_{3}$ and $GdAlO_{3}$ and luminiscent properties of these compounds, were studied. The new route (Combustion method) consist of the redox reactions between the respective metal nitrates and urea in a preheated furnace at ${500^{\circ}C}$. The Phosphor thus obtained were then heated at ${1000^{\circ}C}$ for 2-3 hours to get better luminiscent properties. The incorporation of $Eu^{3+}$ activator in these phosphors were checked by luminiscence investigations. Scanning electron microscopy (SEM) studies were carried out to understand surface morphological features and the particle size. X-ray energy dispersive analysis (EDAX) was also performed for the qualitative analysis of the phosphors.

  • PDF

Growth of Mn,Ce:$LiTaO_3$ and two-color holographic recording (Mn,Ce:$LiTaO_3$의 성장과 이색을 이용한 홀로그램 저장특성)

  • ;Van-Thai Pham
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.96-97
    • /
    • 2002
  • 불순물을 이용한 비휘발성 홀로그램저장[1,2]은 기존의 열정착을 광정착으로 대치하는 방법으로서 여러 가지 희토류 혹은 전이금속이온을 첨가한 LiMbO$_3$ (LNO) 단결정 재료에서 시도되고 있다. 대표적인 재료로서 Mn,Fe:LNO 가 있으나 Mn,Ce:LNO, Cu,Co:LNO, Tb,Fe:LNO 등도 연구되고 있고 Stoichiometric LNO 경우엔 Pr:LNO, Er:LNO, Tb:LNO 등이 연구되고 있다. 그 외에 Mn:YAlO$_3$도 약하긴 하지만 비휘발성이 최근 보고되었다. (중략)

  • PDF

Synthesis and Characterization of (Cr, Fe)-doped Y2O3-Al2O3 Red Pigments ((Cr, Fe)-doped Y2O3-Al2O3계 붉은 안료의 합성과 특성)

  • Shin, Kyung-Hyun;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.350-356
    • /
    • 2009
  • Perovskite codoped with chromium and iron have been studied. Samples with $YAl_{0.96}(Cr_{0.04-x}Fe_x)O_3$(x=0.01, 0.02, 0.03, 0.04) were prepared by solid state reaction at $1450^{\circ}C$ for 6 h and were characterized by XRD, FT-IR, Raman spectroscopy, SEM and UV-vis spectrophotometer. The color of the synthesized pigments were from red to dark brown(in bulk). Up to 0.02 mole $Fe_2O_3$ for substituting $Cr_2O_3$ development of color in lime-glaze gives good red color but as increasing amount of $Fe_2O_3$ and decreasing $Cr_2O_3$ proportionally produce from brownish red to brown. Increasing $Fe_2O_3$ amount lead to weaken crystal field relatively due to have smaller ionic radius than $Cr_2O_3$ ionic one. The UV-vis peaks were shifted to lower wavelength.

Photoluminescence Characteristics of YAG:Ce Phosphor by Combustion Method (연소합성법에 의한 YAG:Ce 형광체의 발광 특성)

  • Lee, Seung-Kyu;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.536-540
    • /
    • 2007
  • The Ce-doped YAG(Yttrium Aluminum Garnet, $Y_3Al_5O_{12}$) phosphor powders were synthesized by combustion method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The XRD patterns show that YAG Phase can form through sintering at $1000^{\circ}C$ for 2 h. This temperature is much lower than that required to synthesize YAG phase via the conventional solid state reaction method. There were no intermediate Phases such as YAP(Yttrium Aluminum Perovskite, $YAlO_3$) and YAM(Yttrium Aluminum Monoclinic, $Y_4Al_2sO_9$) observed in the sintering process. The powders absorbed excitation energy in the range $410{\sim}510\;nm$. Also, the crystalline YAG:Ce showed broad emission peaks in the range $480{\sim}600\;nm$ and had maximum intensity at 528 nm.

Crystal Growth and Second Harmonic Generation of YCa$_4$O$({BO_3})_3$ (YCa$_4$O$({BO_3})_3$ 단결정 성장 및 2차고조파 발생)

  • Yu, Young-Moon;A. Ageyev;Jeong, Suk-Jong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.88-89
    • /
    • 2000
  • The properties for self-frequency doubling (SFD) is unique phenomena for a small number of special single crystals. It is known that there are serious limitations to vary the concentration of active ions, for example high doping of active ions from 1 to 50 atomic %, in nonlinear materials. Until now, the Nd:YAl$_3$(BO$_3$)$_4$ (YAB) and Nd:(Ce,Gd)Sc$_3$(BO$_3$)$_4$ (CSB) crystals with high doping rates are well studied for the application of SFD purpose. They have much useful SFD properties, but also have big problems in crystal growth. In case of YAB crystal, it can be grown by solution melt method with very low growth rates and easy occurrence of inclusions. In case of CSB crystal, it has optically heterogeneity problems because of disarrangement of ions in huntite structure [1]. These problems make above crystals not so attractive for optical applications. Some popular nonlinear materials, such as LiNbO$_3$(LN), KTiOPO$_4$(KTP), LiB$_3$O$_{5}$ (LBO) crystals, are impossible to substitute by Rare Earth activators because of their crystallo-chemical problems of structure. When we dope active ions with the requisite concentrations for laser generation, it results in decreasing of optical quality of crystals or destroying of acentrosymmetric structure. (omitted)d)

  • PDF

Effect of BaF2 as a Flux in Solid State Synthesis of Y3Al5O12:Ce3+ (고상법을 이용한 Y3Al5O12:Ce3+의 제조에서 BaF2가 미치는 영향)

  • Won, Hyung-Seok;Hayk, Nersisyan;Won, Chang-Whan;Won, Hyung-Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.604-610
    • /
    • 2011
  • The effect of $BaF_2$ flux in $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) formation was investigated. Phase transformation of $Y_3Al_5O_{12}$(YAG) was characterized by using XRD, SEM, and TEM-EDS, and it was revealed that the sequential formation of the $Y_4Al_2O_9$(YAM), $YAlO_3$(YAP) and $Y_3Al_5O_{12}$(YAG) in the temperature range of 1000-1500$^{\circ}C$. Single phase of YAG was revealed from 1300$^{\circ}C$. In order to find out the effect of $BaF_2$ flux, three modeling experiments between starting materials (1.5$Al_2O_3$-2.5$Y_2O_3$, $Y_2O_3$-$BaF_2$, and $Al_2O_3$-$BaF_2$) were done. These modeling experiments showed that the nucleation process occurs via the dissolution-precipitation mechanism, whereas the grain growth process is controlled via the liquid-phase diffusion route. YAG:Ce phosphor particles prepared using a proposed technique exhibit a spherical shape, high crystallinity, and an emission intensity. According to the experimental results conducted in this investigation, 5% of $BaF_2$ was the best concentration for physical, chemical and optical properties of $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) that is approximately 10-15% greater than that of commercial phosphor powder.

Erosion Behavior of YAG Ceramics under Fluorine Plasma and their XPS Analysis (불소계 플라즈마에 노출된 YAG 세라믹스의 식각거동 및 XPS 분석)

  • Kim, Kyeong-Beom;Kim, Dae-Min;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Hyung-Tae;Kim, Hyung-Sun;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.456-461
    • /
    • 2009
  • Chemical composition and status of chemical bonding of the YAG($Y_3Al_5O_{12}$) ceramics after the exposure to fluorine plasma have been investigated using X-ray photoelectron spectroscopy, with the analysis on its erosion behavior. On the surface, F showed the maximum content, decreasing with depth, meanwhile the cation composition remained almost constant, irrespective of the position. The peaks due to Y in the reaction layer consisted of two kinds, showing the Y-O and Y-F bonds. These surface modifications under fluorine plasma seem to promote the erosion of the YAG ceramics. Excess addition of $Al_2O_3$ or $Y_2O_3$ into stoichiometric YAG produced 2nd phases of $Al_2O_3$ and $YAlO_3$, respectively, resulting in the slight difference in the local erosion rates. But, the overall average erosion rate was not sensitive to such excess additions of $Al_2O_3$ or $Y_2O_3$.

Photoluminescence characteristics of YAG:Ce phosphor by sol-gel method (졸겔법에 의한 YAG:Ce 형광체의 발광 특성)

  • Choi, Hyung-Wook;Lee, Seung-Kyu;Cha, Jae-Hyeck;Jang, Nak-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.489-490
    • /
    • 2006
  • The Ce-doped YAG(Yttrium Aluminum Garnet, $Y_3Al_5O_{12}$) phosphor powders were synthesized by Sol-gel method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The XRD patterns show that YAG phase can form through sintering at $1000^{\circ}C$ for 2h. This temperature is much lower than that required to synthesize YAG phase via the conventional solid state reaction method. There were no intermediate phases such as YAP(Yttrium Aluminum Perovskite, $YAlO_3$) and YAM(Yttrium Aluminum Monoclinic, $Y_4Al_2O_9$) observed in the sintering process. The powders absorbed excitation energy in the range 410~510nm. Also, the crystalline YAG:Ce showed broad emission peaks in the range 480~600nm and had maximum intensity at 528nm.

  • PDF

The Effect of Seed Orientation on Growth Form and Surface Morphology in Growing NYAB Crystal (NYAB 결정육성시 종자정의 방향이 성장외형 및 표면형상에 미치는 영향)

  • 정선태;최덕용
    • Korean Journal of Crystallography
    • /
    • v.5 no.2
    • /
    • pp.93-99
    • /
    • 1994
  • Growth form and surface morphology of NYAB single crystal grown by TSSG technique using a K2O/3MoOS/0.5B203 flux was investigated. In the crystal grown from <100> or <120> seed, prismatic and (101) faces were well developed with different size each other. (001) face was also developed in the crystal grown from <001> seed. While growth hillocks were observed on the prismatic face of the crystal grown from <100> seed, surface striations parallel to neighbor (101) faces were formed on that face of the crystal grown from <001> seed. The (101) faces were grown by two dimensional nucleation growth. (001) face which was developed at slow growth velocity of [001] direction was grown by screw dislocation Anisotropy of growth velocity as to seed orientation affected on crystal morphology and surface morphology.

  • PDF