• Title/Summary/Keyword: YAG phosphor

Search Result 70, Processing Time 0.021 seconds

The Luminescence Properties of YAG:$Tb^{3+}$ Phosphor Prepared by Hydrothermal Synthesis (YAG:$Tb^{3+}$ 형광체 분말의 수열합성과 발광 특성)

  • 김상문;지성훈;구자인;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.745-750
    • /
    • 2000
  • YAG:Tb3+ as green phosphor were studied for the development of low voltage FED phosphor prepared by hydrothermal synthesis. We changed the concentration of luminescence center ion Tb3+ in hydrothermal reaction of which conditions were at 8M NH4OH as mineralizer, at 35$0^{\circ}C$ for 12hrs. As results, we could finally get the YAG:Tb3+ (Y3-xTbxAl5O12) powder of which particle size was about 0.2~1.0${\mu}{\textrm}{m}$. The excitation spectra and the green emitted spectra of YAG:Tb3+ phosphor powder were observed. When we doped 0.25 mol Tb to YAG, we could observe the maximum cathodoluminescence from YAG:Tb3+ phosphor and the chromaticity coordinate of the phosphor was shown x=0.35, y=0.56 in CIE1931 diagram.

  • PDF

Optical Properties of Spherical YAG:Ce3+ Phosphor Powders Synthesized by Atmospheric Plasma Spraying Method Appling PVA Solution Route and Domestic Aluminium Oxide Seed (PVA 용액법과 국산 산화알루미늄을 적용하여 대기 플라즈마 용사법으로 합성된 구형의 YAG:Ce3+ 형광체의 발광특성)

  • Yong-Hyeon Kim;Sang-Jin Lee
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.424-430
    • /
    • 2023
  • YAG phosphor powders were fabricated by the atmospheric plasma spraying method with the spray-dried spherical YAG precursor. The YAG precursor slurry for the spray drying process was prepared by the PVA solution chemical processing utilizing a domestic easy-sintered aluminum oxide (Al2O3) powder as a seed. The homogenous and viscous slurry resulted in dense granules, not hollow or porous particles. The synthesized phosphor powders demonstrated a stable YAG phase, and excellent fluorescence properties of approximately 115% compared with commercial YAG:Ce3+ powder. The microstructure of the phosphor powder had a perfect spherical shape and an average particle size of approx imately 30 ㎛. As a result of the PKG test of the YAG phosphor powder, the synthesized phosphor powders exhibited an outstanding luminous intensity, and a peak wavelength was observed at 531 nm.

Effect of PVA Polymerization on Synthesis of YAG:Ce3+ Phosphor Powders Prepared by a Solid-liquid Hybrid Route (PVA 중합도가 고상-액상 혼합 방식에 의한 YAG:Ce3+ 형광체 분말 합성에 미치는 영향)

  • Kim, A-Reum;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.424-429
    • /
    • 2014
  • YAG:$Ce^{3+}$ phosphor powders were synthesized using $Al(OH)_3$ seeds by means of a PVA-polymer-solution route. Various types of PVA with different molecular weights (different polymerization) were used. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1500^{\circ}C$ in a mix of nitrogen and hydrogen gases. The final powders were characterized via XRD, SEM, PSA, PL, and PKG analyses. The phosphor properties and morphologies of the synthesized powders were dependent on the PVA type. As the molecular weight of the PVA was increased, the particle size gradually decreased with agglomeration, and the luminous intensity of the phosphor increased. However, the phosphor powder prepared from the PVA exhibiting very high molecular weight, showed a 531 nm (blue) shift from the 541 nm (yellow) wavelength of the YAG:$Ce^{3+}$ phosphor. Finally, the synthesized YAG:$Ce^{3+}$ phosphor powder prepared from the PVA with 89,000 - 98,000 molecular weight showed phosphor properties similar to those of a commercial phosphor powder, but without a post-treatment process.

Fine Size YAG:Tb Phosphor Particles Prepared by Spray Pyrolysis (분무 열분해 공정에 의해 합성된 미세 YAG:Tb 형광체)

  • Lee, Hyo Jin;Hong, Seung Kwon;Jung, Dae Soo;Kang, Yun Chan;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.407-411
    • /
    • 2005
  • YAG:Tb($Y_3Al_5O_{12}:Tb$) phosphor particles were prepared by spray pyrolysis from spray solution containing various types of flux materials. The effects of type of flux, organic material and post-treatment temperature on the characteristics of morphology, crystallinity and photoluminescence of YAG:Tb phosphor particles were investigated. Citric acid and ethylene glycol used as organic additive improved the photoluminescence intensity of the YAG:Tb phosphor particles without destruction of the morphology after post-treatment at high temperature. However, the spherical shape of the precursor particles obtained by spray pyrolysis from spray solution containing high amount of flux material disappeared after post-treatment at $1300^{\circ}C$. YAG:Tb phosphor particles prepared from spray solution containing lithium carbonate flux had fine size and regular morphology after post-treatment. Lithium carbonate used as flux material was also efficient in improvement of the photoluminescence intensity of the YAG:Tb phosphor particles. The optimum photoluminescence intensity of the YAG:Tb phosphor particles prepared from spray solution containing lithium carbonate flux was 189% of that of the phosphor particles prepared from spray solution without flux material.

Combustion Synthesis of YAG:Ce Phosphor with Teflon (Teflon을 이용한 YAG:Ce 형광체 합성)

  • Yeon, Jung Woon;Won, Chang Whan;Won, Hyung Il;Nersisyan, H.H.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.439-443
    • /
    • 2012
  • YAG:Ce phosphor were prepared in a self-propagating high-temperature synthesis (SHS) using a $1.5Y_2O_3+2.5Al_2O_3+0.116CeO_2+3.0KClO_3+kCO(NH_2)_2+m(C_2F_4)_n$ precursor mixture. The heat for the combustion propagation was provided by the reaction of a $KClO_3+CO(NH_2)_2+(C_2F_4)n$ mixture. Pure-phase YAG phosphor was synthesized at the combustion temperature of $1210^{\circ}C$ from k=3.6 mole and m=0.3 mole. The as-prepared YAG:Ce phosphor had a particle size of $2-10{\mu}m$. The addition of Teflon to the precursor mixture increased the YAG particle size and its luminescent intensity. The emission peak of the YAG phosphor was blue-shifted with an increase of Teflon concentration.

Photoluminescence Characteristics of YAG:Ce Phosphor by Combustion Method (연소합성법에 의한 YAG:Ce 형광체의 발광 특성)

  • Lee, Seung-Kyu;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.536-540
    • /
    • 2007
  • The Ce-doped YAG(Yttrium Aluminum Garnet, $Y_3Al_5O_{12}$) phosphor powders were synthesized by combustion method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The XRD patterns show that YAG Phase can form through sintering at $1000^{\circ}C$ for 2 h. This temperature is much lower than that required to synthesize YAG phase via the conventional solid state reaction method. There were no intermediate Phases such as YAP(Yttrium Aluminum Perovskite, $YAlO_3$) and YAM(Yttrium Aluminum Monoclinic, $Y_4Al_2sO_9$) observed in the sintering process. The powders absorbed excitation energy in the range $410{\sim}510\;nm$. Also, the crystalline YAG:Ce showed broad emission peaks in the range $480{\sim}600\;nm$ and had maximum intensity at 528 nm.

Synthesis of YAG:Ce3+ Phosphor Powders by Polymer Solution Route and Alumina Seed Application (폴리머용액법 및 알루미나 seed를 도입한 YAG:Ce3+ 형광체 분말 합성)

  • Kim, Yong-Hyeon;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • $YAG:Ce^{3+}$ phosphor powders were synthesized using a $Al_2O_3$ seed (average particle size: 5 ${\mu}m$) by the polymer solution route. PVA solution was added to the sol precursors consisting of the seed powder and metal nitrate salts for homogeneous mixing in atomic scale. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1400^{\circ}C{\sim}1500^{\circ}C$ in $N_2/H_2$ atmosphere. The final powders were characterized by using XRD, SEM, PSA, PL and PKG test. All synthesized powders were crystallized to YAG phase without intermediate phases of YAM or YAP. The phosphor properties and morphologies of the synthesized powders were strongly dependent on the PVA content. Finally, the synthesized $YAG:Ce^{3+}$ phosphor powder heated at $1500^{\circ}C$, which is prepared from 12:1 PVA content and has an average particle size of 15 ${\mu}m$, showed similar phosphor properties to a commercial phosphor powder.

Fabrication and analysis of luminous properties of phosphor ceramic for laser headlamp in automotive application (자동차용 레이저 헤드램프를 위한 형광체 세라믹 제조 및 발광 특성 분석)

  • Choi, Seung Hee;Kwon, Seok Bin;Yoo, Jung Hyeon;Kim, Jae Pil;Kim, Wan Ho;Jeong, Ho-Jung;Kim, Bo Young;Yoon, Dae Ho;Song, Young Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.73-77
    • /
    • 2020
  • In this study, phosphor ceramics were fabricated, and optical properties were analyzed for application to nextgeneration automotive laser headlamps by using a spherical YAG : Ce phosphor with a garnet structure synthesized based on the spray drying method. The thickness of phosphor ceramic using spherical YAG : Ce phosphor was obtained with 100 ㎛, 150 ㎛, and 200 ㎛ to investigate the effect of thickness on optical properties such as light conversion efficiency, heat dissipation, luminance and color temperature. The results of this study are expected to play a significant role in the manufacturing process for the fabrication of phosphor ceramic by solving issues such as the high cost and low yield in the conventional liquid method to manufacture YAG : Ce nano fluorescent materials.

Luminescence characteristics of YAG:Ce phosphor by combustion method (산화법에 의한 YAG:Ce 형광체의 발광 특성)

  • Choi, Hyung-Wook;Lee, Seung-Kyu;Cha, Jae-Hyeck;Park, Yong-Seo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.322-323
    • /
    • 2006
  • The nano-sized Ce-doped YAG(Yttrium Aluminum Garnet, $Y_3Al_5O_{12}$) phosphor powders were prepared by combustion method from a mixed aqueous solution of metal nitrates, using citric acid as a fuel. The luminescence formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The XRD patterns show that YAG phase can form at all of the $Ce^{3+}$ concentration. However, when $Ce^{3+}$ concentration is over 2.0mol%, XRD patterns show $CeO_2$ peak between (321) peak and (400) peak. The pure crystalline YAG:Ce with uniform size of 30nm was obtained at 0.6mol% of the $Ce^{3+}$ concentration. The crystalline YAG:Ce powders showed broad emission peaks in the range 475~630nm and had maximum intensity at 526nm.

  • PDF

Photoluminescence characteristics of YAG:Ce phosphor by sol-gel method (졸겔법에 의한 YAG:Ce 형광체의 발광 특성)

  • Choi, Hyung-Wook;Lee, Seung-Kyu;Cha, Jae-Hyeck;Jang, Nak-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.489-490
    • /
    • 2006
  • The Ce-doped YAG(Yttrium Aluminum Garnet, $Y_3Al_5O_{12}$) phosphor powders were synthesized by Sol-gel method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The XRD patterns show that YAG phase can form through sintering at $1000^{\circ}C$ for 2h. This temperature is much lower than that required to synthesize YAG phase via the conventional solid state reaction method. There were no intermediate phases such as YAP(Yttrium Aluminum Perovskite, $YAlO_3$) and YAM(Yttrium Aluminum Monoclinic, $Y_4Al_2O_9$) observed in the sintering process. The powders absorbed excitation energy in the range 410~510nm. Also, the crystalline YAG:Ce showed broad emission peaks in the range 480~600nm and had maximum intensity at 528nm.

  • PDF