• 제목/요약/키워드: Y-jet Nozzle

검색결과 873건 처리시간 0.027초

제한공간에서 비예혼합 난류제트 화염의 부상특성 (Characteristics of Lifted Flames in Nonpremixed Turbulent Confined Jets)

  • 차민석;정석호
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 1996
  • Effects of ambient geometry on the liftoff characteristics are experimentally studied for nonpremixed turbulent jet flames. To clarify the inconsistency of the nozzle diameter effect on the liftoff height, the ambiences of finite and infinite domains are studied. For nonpremixed turbulent jet issuing from a straight nozzle to infinite domain, flame liftoff height increases linearly with nozzle exit mean velocity and is independent of nozzle diameter. With the circular plate installed on the upstream of nozzle exit, flame liftoff height is lower with plate at jet exit than without, but flame liftoff characteristics are similar to the case of infinite domain. For the confined jet having axisymmetric wall boundary, the ratio of the liftoff height and nozzle diameter is proportional to the nozzle exit mean velocity demonstrating the effect of the nozzle diameter on the liftoff height. The liftoff height increases with decreasing outer axisymmetric wall diameter. At blowout conditions, the blowout velocity decreases with decreasing outer axisymmetric wall diameter and liftoff heights at blowout are approximately 50 times of nozzle diameter.

  • PDF

페탈노즐로부터 방출되는 초음속 자유제트에 관한 실험적 연구 (Experimental Study of the Supersonic Free Jet Discharging from a Petal Nozzle)

  • 이준희;김중배;곽종호;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2133-2138
    • /
    • 2003
  • In general, flow entrainment of surrounding gas into a supersonic jet is caused by the pressure drop inside the jet and the shear actions between the jet and the surrounding gas. In the recent industrial applications, like supersonic ejector system or scramjet engine, the rapid mixing of two different gases is important in that it determines the whole performance of the flow system. However, the mixing performance of the conventional circular jet is very low because the shear actions are not enough. The supersonic jet discharging from a petal nozzle is known to enhance mixing effects with the surrounding gas because it produces strong longitudinal vortices due to the velocity differences from both the major and minor axes of petal nozzle. This study aims to enhance the mixing performance of the jet with surrounding gas by using the lobed petal nozzle. The jet flows from the petal nozzle are compared with those from the conventional circular nozzle. The petal nozzles employed are 4, 6, and 8 lobed shapes with a design Mach number of 1.7 each, and the circular nozzle has the same design Mach number. The pitot impact pressures are measured in detail to specify the jet flows. For flow visualization, the schlieren optical method is used. The experimental results reveal that the petal nozzle reduces the supersonic length of the supersonic jet, and leads to the improved mixing performance compared with the conventional circular jet.

  • PDF

타원형 노즐의 내부유동 구조가 액주분열에 미치는 영향 (Effect of Flow Structure Inside Nozzle on the Liquid Jet Breakup of Elliptical Nozzle)

  • 구건우;홍정구
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.44-54
    • /
    • 2013
  • An experimental study was performed to investigate the liquid jet breakup of a circular nozzle and elliptical nozzles. Furthermore Numerical simulation was attempted to investigate the internal flow structure in the circular and elliptical nozzles. This study showed that the disintegration characteristics of the liquid jet of elliptical nozzles were much different from those of the circular nozzle. The liquid jet issued from the elliptical nozzles became more unstable at the same injection pressure. Surface breakup was observed at the jet issued from the elliptical nozzles with the increase of injection pressure. The disintegration of the liquid jet of elliptical nozzles was related with the internal flow structure which is revealed from the numerical simulation.

1열 원형 서브머지드 충돌수분류군에 의한 열전달의 실험적 연구 (Impingement Heat Transfer Within a Row of Submerged Circular Water Jets)

  • 엄기찬
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.538-544
    • /
    • 2010
  • An experimental investigation is presented to study the effect nozzle spacing, jet to plate spacing and Reynolds number on the local heat transfer to normally upward impinging submerged circular water jets on a flat heated surface. Nozzle arrays are a single jet(nozzle dia. = 8 mm), a row of 3 jets(nozzle dia. = 4.6 mm, nozzle spacing = 37.5 mm) and a row of 5 jets(nozzle dia. = 3.6 mm, nozzle spacing = 25 mm), and jet to plate spacing ranging from 16∼80 mm(H/D = 2∼10) is tested. Reynolds number based on single jet exit condition is varied 30000∼70000($V_o$ = 3∼7 m/s). Except for the condition of H/D = 10, the average Nusselt number of multi-jet is higher than that of single jet. For H/D = 2, average Nusselt number is increased by 50.3∼82.5% for a row of 3 jets and by 52.9∼65.2% on a row of 5 jets when compared to the average Nusselt number on the single jet.

초음속 제트의 스크리치 톤에 관한 실험적 연구 (An Experimental Study on the Screech Tone in Supersonic Jet)

  • 임채민;권용훈;청목준지;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2023-2028
    • /
    • 2004
  • The effects of nozzle-lip thickness on the relationship between screech tone and broadband shock-associated noise were experimentally investigated using a convergent-divergent nozzle with a design Mach number of 2.0. Overall sound pressure levels (OASPL) and noise spectra were obtained at far-field locations. Schlieren optical system was used to visualize the flow-fields of supersonic jets. A baffle plate was installed at the exit of the nozzle and its size was varied to obtain different nozzle-lip thicknesses. Experiment was carried out over a wide range of nozzle pressure ratios from 2.0 and 18.0, which corresponds to over- and under-expanded conditions. The results obtained clearly show that the screech tones are influenced by the nozzle-lip thickness. It is found that the screech tone and its peak amplitude are strongly dependent on whether the jet is over-expanded and under-expanded at the nozzle exit.

  • PDF

평면 충돌제트에서 노즐 깃이 단상 및 비등 열전달에 미치는 영향 (The Effect of Nozzle Collar on Single Phase and Boiling Heat Transfer by Planar Impinging Jet)

  • 신창환;임성환;우성제;조형희
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.878-885
    • /
    • 2005
  • The water jet impingement cooling is one of the techniques to remove the heat from high heat flux equipments. Local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer are investigated in the fee surface jet and submerged jet. Boiling is initiated from the farthest downstream and increase of the wall temperature is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance fur H/W$\le$1 causes significant increases and distribution changes of heat transfer. Developed boiling reduces the differences of heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to nozzle collar, Hc are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increases as decreased spacing of collar to heated surface. Heat transfer is enhanced fur region from the stagnation to x/W$\~$8 in the free surface jet and to x/W$\~$5 in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet comparing with higher velocity condition. It is because the increased velocity by collar is de-accelerated downstream.

단일수분류 및 수분류군에 의한 열전달(I)-단일수분류- (Heat Transfer from Single and Arrays of Impinging Water Jets(I)-Single Water Jet-)

  • 엄기찬;이종수;유지오
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1105-1114
    • /
    • 1997
  • The heat transfer characteristics of free surface water jet impinging normally against a flat uniform heat flux surface were investigated. This deals with the effect of three nozzle configurations (Cone type, Reverse cone type, Vertical circular type) on the local and the average heat transfer. Heat transfer measurements were made for water jet issuing from a nozzle of which exit diameter 8 mm. The experimental conditions investigated are Reynolds number range of 27000 ~ 70000( $V_{O}$=3 ~ 8 m/s), nozzle-to-target plate distances H/D=2 ~ 10, and radial distance from the stagnation point r/D ~ = 0 ~ 7.42. For all jet velocities of H/D=2, the local Nusselt number decreased monotonically with increasing radial distance. However, for H/D from 4 to 10, and for the jet velocity $V_{O}$.geq.7 m/s for Cone type nozzle and $V_{O}$.geq.6 m/s for the other type nozzles, the Nusselt number distributions exhibited secondary peaks at r/D=3 ~ 3.5. For Reverse cone type nozzle and Vertical circular nozzle, the maximum stagnation point heat transfer and the maximum average heat transfer occurs at H/D=8. But for the Cone type nozzle, the maximum stagnation and average heat transfer occurs at H/D=10, 4, respectively. From the optimum nozzle-to-target plate distance, the stagnation and the average heat transfer reveal the following ranking: Reverse cone type nozzle, Vertical circular type nozzle, Cone type nozzle.ozzle.

1열 원형 충돌수분류군에 의한 열전달의 실험적 연구 (제2보, 노즐-전열면간 거리의 영향) (Impingement heat transfer within 1 row of circular water jets: Part 2-Effects of nozzle to heated surface distance)

  • 엄기찬;이종수;김상필
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.59-66
    • /
    • 2000
  • In a previous paper, we have examined the effects of nozzle configuration and jet to jet spacing on the heat transfer of 1 row of circular water jets. In this paper, experiments have been conducted to obtain the effects of nozzle to target plate distances on the heat transfer of 1 row of 3 jets and 1 row of 5 jets. The nozzle configurations are Cone type, Reverse cone type and Vertical circular type. Nozzle to target plate distance H was varied from 16 mm(H/D=2) to 80mm(H/D=10). For fixed value of mass flow rate and nozzle to target plate distance, larger values of average Nusselt number were obtained for the smaller jet to jet spacing. For the array of water jets, the average heat transfer was decreased slightly with increasing nozzle to target plate distance at low jet velocity of $\textrm{V}_{o}$=3 m/s. However, except for $\textrm{V}_{o}$=8 m/s of 1 row of 5 jets, it was increased with increasing nozzle to target plate distance at high jet velocity of $\textrm{V}_{o}$$\geq$6m/s. We proposed to apply the nozzle configuration of maximum average heat transfer to each nozzle to target plate distance for 1 row of 3 jets, and, it was Reverse cone type nozzle for 1 row of 5 jets(Reynolds number$\geq$36000).

  • PDF

원형 제트 충돌 열전달과 유동 특성에 관한 실험적 연구 : 노즐 벽 두께와 노즐 출구 압력의 영향 (An Experimental Study on Heat Transfer and Flow Characteristics of a Circular Impinging Jet on a Flat Plate : Effects of Nozzle Wall Thickness and Nozzle Exit Pressure)

  • 윤상헌;양근영;손동기;최만수
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1285-1295
    • /
    • 1999
  • An experimental study on heat transfer and flow characteristics of a circular impinging jet on a flat plate has been carried out. Of particular interests are the effects of nozzle wall thickness and nozzle exit pressure. Experimental apparatus has been designed to view heating plate coated by TLC from the opposite side of the nozzle in order to measure heat transfer rates for cases of very small nozzle to plate spacings. A visualization study of jet flows has also been performed. As the nozzle wall thickness increases at small nozzle to plate spacings, the effect of mixing is inhibited due to the confinement caused by the finite nozzle wall, consequently, heat transfer rates have been decreased. At small nozzle to plate spacings, heat transfer rates and nozzle exit pressures are increased together, therefore, enhancement of heat transfer at small nozzle to plate spacings should be considered in conjunction with the need of more fan power to generate the same Reynolds numbers.

초음속 동축 제트의 구조에 미치는 외부노즐 분사각의 영향 (Effect of Outer Nozzle Ejection Angle on Jet Structure issuing from Supersonic Dual Coaxial Nozzle)

  • 백승철;권수영;주성열;권순범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.426-431
    • /
    • 2001
  • This paper experimentally investigates the characteristics of dual coaxial jet issuing from inner supersonic nozzle and four kinds of outer converging nozzle of 40, 50, $60^{\circ}$ and $70^{\circ}$ in outer ejection angle. The pressure ratio of the stagnation to the exit ambient pressures in the inner supersonic nozzle of constant expansion rate is 7.5, which is corresponded to the condition of a slightly underexpanded, and that of outer nozzle is 4.0. Flow visualizations by using of shadowgraph method, impact pressure and centerline static pressure measurements are presented. It is found that the jet structure is changed significantly by the variation of outer nozzle ejection angle. Impact pressure level is lower and undulation of static pressure is higher, as the injection angle of outer jet increases.

  • PDF