• Title/Summary/Keyword: Y-deflection

Search Result 3,297, Processing Time 0.031 seconds

The Study on the Development of Composite Robot Hand for TFT-LCD Glass Transport (대면적 TFT-LCD 유리기판 이송용 복합재료 로봇 손 개발에 관한 연구)

  • Choi, Gi-Han;Han, Chang-Woo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1357-1365
    • /
    • 2002
  • A robot hand is used to transport the glass substrate in TFT-LCD manufacturing process. Carbon/epoxy composite is one of the best materials for this kind of robot hand application, due to their lightweight, high stiffness, and good damping characteristics. Major requirement of the robot hand is given as allowable deflection under weight loading of glass substrate and robot hand itself. In this thesis, a carbon/epoxy robot hand was analyzed using finite element method and beam theory to determine the deflection of the hand under the loading that is equivalent to actual weight. Because natural frequency is one of the major interests in robot hand design for TFT-LCD manufacturing process, modal analysis is also conducted using finite element method and beam theory. A robot hand was manufactured, and actual deflection and natural frequency were measured to verify the analysis results and compliance to requirement. The test results showed good agreement with analysis results.

Compensatory cylindricity control of the C.N.C. turing process (컴퓨터 수치제어 선반에서의 진원통도 보상제어)

  • 강민식;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.694-704
    • /
    • 1988
  • A recursive parameter estimation scheme utilizing the variance perturbation method is applied to the workpiece deflection model during CNC turning process, in order to improve the cylindricity of slender workpiece. It features that it is based on exponentially weighted recursive least squares method with post-process measurement of finish surfaces at two locations and it does not require a priori knowledge on the time varying deflection model parameter. The measurements of finish surfaces by using two proximity sensors mounted face to face enable one to identify the straightness, guide-way, run-out eccentricity errors. Preliminary cutting tests show that the straightness error of the finish surface due to workpiece deflection during cutting is most dominant. Identifying the errors and recursive updating the parameter, the off-line control is carried out to compensate the workpiece deflection error, through single pass cutting. Experimental results show that the proposed method is superior to the conventional multi-pass cutting and the direct compensation control in cutting accuracy and efficiency.

Surface Generation in End Milling considering Tool Deflection (엔드밀 가공시 공구변형을 고려한 표면형성 해석)

  • 이상규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.119-124
    • /
    • 1996
  • End milling operation is very important in machining precision components. Deterioration of surface roughness and surface geometry will cause more process for surface finishing. According to the feed rate and the cutting edge geometry, the cusp which is geometrically uncut surface is determined. To reduce the cost for dinishing operation after end milling, the cusp must be remaianed in small size as possible. Due to the cylindrical type of the end mill, tool deflection is one of the main problems in surface generation. The cutting resistance and the rigidity of the end mill will determine the size of tool deflection. One more important factor which deteriorate surface quality comes from the error in manufacturing end mills. Run-out of end mill which is the difference of the radius of each cutting edges will produce the difference of the cusp size in every rotation of end mill. These three major factors to the surface quality will be analized and the result will be compared with experimental ressult.

  • PDF

Development of Clamp Type Transferring Mechanism for Package Substrate's Wet Process (패키지 기판 습식 공정용 클램프 이송 장치의 개발)

  • Ryu, Sun-Joong;Heo, Jun-Yeon;Cho, Seung-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.193-201
    • /
    • 2011
  • Clamp type transferring mechanism for package substrate's wet processes was newly developed instead of conventional roller type transferring mechanism. Clamp type transferring mechanism has the advantages of reducing the panel deflection and of minimizing the contact problem between the panel and the transferring mechanism. Individual clamp of the mechanism has two distinct mechanical functions which are perfectly fixing a panel during the transferring and generating adequate tension for the panel. To determine the mechanical parameters of the clamp, panel deflection simulation was conducted and the result was verified by the panel deflection measurement. Also, fixing angle of a clamp could be determined by the free body force analysis of individual clamp. Finally clamp type transferring mechanism was actually manufactured and the transferring performance was verified during the water spraying condition of the package substrate's wet processes.

Interconnection Network for Routing Distributed Video Stream on Popularity - Independent Multimedia-on-Demand Server (PIMODS서버에서 분산 비디오스트림의 전송을 위한 상호연결망)

  • 임강빈;류문간;신준호;김상중;최경희;정기현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.35-45
    • /
    • 1999
  • This paper presents an interconnection network for load balancing on a multimedia server and proposes a simple probabilistic model of the interconnection network for analysing the traffic characteristics. Because the switch uses deflection algorithm for routing, the traffic load on the switch seriously affects deflection probability. In this paper, we trace the deflection probability as a function of the traffic load according to the model. By comparing the result with the empirical result, we prove that the model is useful for estimating the deflection probability and traffic saturation point against the amount of packets getting into the switch.

  • PDF

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

Prestress force effect on fundamental frequency and deflection shape of PCI beams

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Sung, Yu-Chi;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.255-265
    • /
    • 2018
  • The prestress force effect on the fundamental frequency and deflection shape of Prestressed Concrete I (PCI) beams was studied in this paper. Currently, due to the conflicts among existing theories, the analytical solution for properly considering the structural behavior of these prestressed members is not clear. A series of experiments were conducted on a large-scale PCI beam of high strength concrete with an eccentric straight unbonded tendon. Specifically, the simply supported PCI beam was subjected to free vibration and three-point bending tests with different prestress forces. Subsequently, the experimental data were compared with analytical results based on the Euler-Bernoulli beam theory. It was proved that the fundamental frequency of PCI beams is unaffected by the increasing applied prestress force, if the variation of the initial elastic modulus of concrete with time is considered. Vice versa, the relationship between the deflection shape and prestress force is well described by the magnification factor formula of the compression-softening theory assuming the secant elastic modulus.

A Study on the Flame Propagation Characteristics for LPG and Gasoline fuels by Using Laser Deflection Method (레이저 굴절법을 이용한 LPG와 가솔린 연료의 화염전파 특성에 관한 연구)

  • Lee, Kihyung;Lee, Changsik;Kang, Kernyong;Kang, Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1608-1614
    • /
    • 2000
  • For the purpose of obtaining fundamental data which is needed to develope combustion system of LPG engine, we made constant volume chamber and analyzed flame propagation characteristics under different intial temperature, initial pressure and equivalence ratio which affect combustion of LPG. We investigated flame propagation speed of each fuel using laser deflection method and compared with the investigated flame propagation speed of each fuel using laser deflection method and compared with the results of image processing of flame. As a result, the maximum flame propagation speed was found at equivalence ratio 1.0 and 1.1 for LPG and gasoline, respectively. In the lean region, we can see that flame propagation speed of LPG surpasses that of gasoline. On the contrary, flame propagation speed of gasoline surpasses LPG in the rich region. As initial temperature and initial pressure were higher, flame propagation speed was faster. And, as equivalence ratio was larger and initial temperature was higher, combustion duration was shorter and maximum combustion pressure was higher.

A Pacemaker AutoSense Algorithm with Dual Thresholds

  • Kim, Jung-Kuk;Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.477-484
    • /
    • 2002
  • A pacemaker autosense algorithm with dual thresholds. one for noise or tachyarrhythmia detection (noise threshold, NT) and the other for intrinsic beat detection (sensing threshold. ST), was developed to improve the sensing performance in single pass VDD electrograms. unipolar electrograms, or atrial fibrillation detection. When a deflection in an electrogram exceeds the NT (defined as 50% of 57), the autosense algorithm with dual thresholds checks if the deflection also exceeds the ST. If it does, the autosense algorithm calculates the signal to noise ratio (SNR) of the deflection to the highest deflection detected by NT but lower than ST during the last cardiac cycle. If the SNR 2, the autosense algorithm declares an intrinsic beat detection and calculates the next ST based on the three most recent intrinsic peaks. If the SNR $\geq$2, the autosense algorithm checks the number of deflections detected by NT during the last cardiac cycle in order to determine if it is a noise detection or tachyarrhythmia detection. Usually the autosense algorithm tries to set the 57 at 37.5% of the average of the three intrinsic beats, although it changes the percentage according to event classifications. The autosense algorithm was tested through computer simulation of atrial electrograms from 5 patients obtained during EP study, to simulate a worst sensing situation. The result showed that the ST levels for autosense algorithm tracked the electrogram amplitudes properly, providing more noise immunity whenever necessary. Also, the autosense algorithm with dual thresholds achieved sensing performance as good as the conventional fixed sensitivity method that was optimized retrospectively.

Dynamic Responses Characteristics of Steel Box Railway Bridges Subjected to Train Loading (열차주행에 따른 강박스 철도교의 동적응답특성)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jo, Eun-Pyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1306-1314
    • /
    • 2009
  • By rising the interests of the railroad, It has been required the research about railroad structure. And since 2000, the study about railway bridges caused by steel box railway bridges has been only 0.2 %. So I was hard to find out about steel box railway bridges. In this study, I evaluate and analyze 4 types(KTX, Saemaeul, Mugunghwa, Freight) of dynamic caused by train loading, natural frequency and damping ratio, verticality deflection and verticality acceleration, end slope deflection, impact factor for dynamic characteristics analysis. natural frequency was measured 2.45 Hz~3.34 Hz and damping ratio revealed for 1.26~2.84 %. Maximum verticality deflection(4.86 mm) was sufficiently satisfied the design criteria(30.1 mm), but in the case of verticality acceleration's respond, design criteria BRDM(bridge design manual) & CTRL presentation derive rail limit value 0.35 g be more than value 6 time recorded, maximum was measured 0.49 g in 3 kinds of train(KTX, Saemaeul, Mugunghwa), except for Freight. Survey impact factor of Experiment bridge was 0.20 which is measured when the KTX(15:04) was driving. impact factor is enough contended with design criteria 0.29 which is presented in domestic railway design criteria and thoroughly guarantee the dynamic stability.