• Title/Summary/Keyword: Y-Junction Power Divider

Search Result 16, Processing Time 0.024 seconds

X-band Microstrip 4×4 Broadband Circularly Polarized Array Antenna Using Sequential Rotation Divider Structure (시퀀셜 로테이션 분배기 구조를 이용한 X-band 마이크로스트립 4×4 광대역 원형 편파 배열 안테나)

  • Kim, Jung-Han;Kim, Joong-Kwan;Kim, Yong-Jin;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.158-165
    • /
    • 2007
  • In this paper, the circularly polarized $4{\times}4$ array antenna is proposed for the X-band. A single antenna consists of square patch and unequal cross-aperture coupled feeding. The RHCP(Right Handed Circularly Polarization) is generated by unequal cross-aperture coupled feeding. By reducing space among elements of way antenna from 0.8 ${\lambda}_0$ to 0.45 ${\lambda}_0$, the mounting area of array antenna is miniaturized. The $2{\times}2$ array antenna is designed using sequential rotation feeding network. The good level of gain, axial ratio, and impedance bandwidth are achieved. The $4{\times}4$ array antenna is extended by ${\lambda}/4$ transformer and T-junction power divider. The simulated maximum radiation gain is 15.09 dBi at 10 GHz. The simulated 3 dB Axial Ratio bandwidth is from 9.05 to 10.4 GHz(13.5%). Also the measured impedance bandwidth($VSWR{\leq}2$) of manufactured $4{\times}4$ array antenna is from 8.45 to 11.84 GHz(33.9%). The measured maximum radiation gain is 11.10 dBi at 10 GHz. The measured 3 dB Axial Ratio bandwidth is from 9.42 to 10.47 GHz(10.5%).

A Novel Waveguide-based Ka-band Power Divider/Combiner Using Slotline-to-Microstrip Transitions (슬롯라인-마이크로스트립 변환을 이용한 도파관 형태의 Ka-band 전력 분배/결합기)

  • 정진호;천창율;권영우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.506-511
    • /
    • 2002
  • In this paper, waveguide-based power combiner using conventional slotline-to-microstrip transition was proposed at Ka-band. The proposed 2-way and 4-way power combiner consist of waveguide-to-slotline transition, two or four slotline-to-microstrip transitions, and impedance matching networks. Their structures were simulated and optimized by 3-D FEM simulation. The 2-way power combiner showed a very low back-to-back insertion loss of 1.0 dB and return loss better than 15 dB from 25.7 GHz to 29.8 GHz except the resonant frequency. The 2-way power combining approach was extended to 4-way power combining using slotline tee junction. The 4-way power combiner showed the similar performance to that of 2-way power combiner with 2 GHz smaller bandwidth.

A Design and Fabrication of a High Power SSPA for C-Band Satellite Communication (C-Band 위성통신용 고출력 증폭기의 설계 및 제작)

  • 예성혁;윤순경;전형준;나극환
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.27-31
    • /
    • 1996
  • In this paper, The SSPA(Solid State Power Amplifier) is 100 watts amplifier which is used with C-Band Satellite communication Up-Link frequency, 5.875 ∼6.425 GHz. SSPA requires more output power than is available from a single GaAs FET with result it is necessary to combine the output of many device. To achieve a high power, it is important to make a good N-way power divider which has a small different phase, good combining efficiency and high power handling capability. The reliability of Power GaAs FET decrease with increasing junction temperature, power amplifier in general dissipate amount of power. It is important to provide them with a heatsink and a temperature compensation circuit to dispose of the unwanted heat. To compensate temperature, Using PIN diode attenuator, it is enable to get a precision gain control. The output power of the SSPA is more than 100 watt with which the TWTA (Traveling-Wave Tube Amplifier) can be replaced. Each stage was measured by the Network analyzer PH8510C, Power meter Booton 42BD, The gain is more than 53 dB, flatness is less than 1.5 dB.

  • PDF

Wideband VHF and UHF RF Front-End Receiver for DVB-H Application

  • Park, Joon-Hong;Kim, Sun-Youl;Ho, Min-Hye;Baek, Dong-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.81-85
    • /
    • 2012
  • This paper presents a wideband and low-noise direct conversion front-end receiver supporting VHF and UHFbands simultaneously. The receiver iscomposed of a low-noise amplifier (LNA), a down conversion quadrature mixer, and a frequency divider by 2. The cascode configuration with the resistor feedback is exploited in the LNA to achieve a wide operating bandwidth. Four gainstep modesare employed using a switched resistor bank and a capacitor bank in the signal path to cope with wide dynamic input power range. The verticalbipolar junction transistors are used as the switching elements in the mixer to reduce 1/f noise corner frequency. The proposed front-end receiver fabricated in 0.18 ${\mu}m$ CMOS technology shows very low minimum noise figureof 1.8 dB and third order input intercept pointof -12dBm inthe high-gain mode of 26.5 dBmeasured at 500 MHz.The proposed receiverconsumeslow current of 20 mA from a 1.8 V power supply.

Closely Spaced Two-Element Folded-Dipole-Driven Quasi-Yagi Array

  • Ta, Son Xuat;Kang, Sang-Gu;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.254-259
    • /
    • 2012
  • This paper presents a closely spaced two-element folded-dipole-driven quasi-Yagi array with low mutual coupling between adjacent elements. The antenna utilizes a T-junction power divider as the feeding network, with an input impedance of $50{\Omega}$. A microstrip-stub is added to the ground plane in the middle of the two elements to improve the mutual coupling characteristics. The folded dipole driver is connected to a $50{\Omega}$ microstrip line via a broadband microstrip-to-coplanar stripline transition with a quarter radial stub. A mutual coupling of less than -22 dB is measured between two folded-dipole-driven quasi-Yagi antennas with a center-to-center spacing of 30 mm ($0.55{\lambda}_0$ at 5.5 GHz). The proposed quasi-Yagi array yields a measured bandwidth of 4.75~6.43 GHz for the -10 dB reflection coefficient and a gain of 6.14~7.12 dBi within the bandwidth range.

High-Efficiency, High-Gain, Broadband Quasi-Yagi Antenna and Its Array for 60-GHz Wireless Communications

  • Ta, Son Xuat;Kang, Sang-Gu;Han, Jea Jin;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • This paper introduces a high-efficiency, high-gain, broadband quasi-Yagi antenna, and its four-element array for use in 60-GHz wireless communications. The antenna was fed by a microstrip-to-slotline transition consisting of a curved microstripline and a circular slot to allow broadband characteristics. A corrugated ground plane was employed as a reflector to improve the gains in the low-frequency region of the operation bandwidth, and consequently, to reduce variation. The single antenna yielded an impedance bandwidth of 49 to 69 GHz for $|S_{11}|$ <-10dB and a gain of >12.0 dBi while the array exhibited a bandwidth of 52 to 68 GHz and a gain greater than 15.0 dBi. Both proposed designs had small gain variations (${\pm}0.5$ dBi) and high radiation efficiency (>95%) in the 60-GHz bands. The features of the proposed antenna were validated by designing, fabricating, and testing a scaled-up configuration of the single antenna at the 15-GHz band. The measurements resulted in an impedance bandwidth of 13.0 to 17.5 GHz for $|S_{11}|$ <-10dB, a gain of 10.1 to 13.2 dBi, and radiation efficiency in excess of 88% within this bandwidth. Additionally, the 15-GHz antenna yielded quite symmetric radiation profiles in both E- and H-planes, with a high front-to-back ratio.