• 제목/요약/키워드: Y Factor Method

검색결과 13,071건 처리시간 0.052초

다구찌 기법의 잡음인자 수준 정하는 기법 제안 (Propose to new Method determining level of Noise Factor of Taguchi Method)

  • 이상복
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2009년도 추계학술대회
    • /
    • pp.317-323
    • /
    • 2009
  • In this paper, we propose new methods which is to determine level of noise factor. Even Taguchi give level of noise factor which is best(or maximum) and worst(or minimum) condition, we give level of noise factor which is representative value by observing noise factor frequency. Sometimes level of noise factor is given one, two and three. We know this method is more fit in real fields.

  • PDF

다양한 확률분포 하에서 다구찌 기법의 잡음인자 수준 정하는 기법 (Method determining level of Noise Factor of Taguchi Method under various probability distribution)

  • 이상복
    • 품질경영학회지
    • /
    • 제37권4호
    • /
    • pp.10-15
    • /
    • 2009
  • In this paper, we propose new methods which is to determine level of noise factor. Even Taguchi give level of noise factor which is best(or maximum) and worst(or minimum) condition, we give level of noise factor which is representative value by observing noise factor frequency. Sometimes level of noise factor is given one, two and three. We know this method is more fit in real fields.

2경간 연속 강합성거더의 개선된 부정정력 계산 방법 (Improved Method for Indeterminate forces of Two-span Steel-concrete Composite Girders)

  • 지구삼;김충언;신동기;최동호
    • 대한토목학회논문집
    • /
    • 제33권2호
    • /
    • pp.423-431
    • /
    • 2013
  • k-factor법은 합성교량의 설계에서 부정정 응력을 산정하는 방법으로 널리 사용되고 있다. 이 방법의 적정성을 평가하기 위하여 2경간 연속 강합성거더에 대하여 등가하중법과 비교하였다. k-factor법은 크리프에 대해서는 강재응력을 과소평가하고, 부모멘트 구간에서는 응력의 방향을 반대로 산정하며, 건조수축이나 온도차에 대해서는 단면변화를 고려하지 못하는 것을 확인하였다. 이 논문에서는 k-factor법의 정확성을 개선하면서, 계산의 편리성은 유지할 수 있는 j-factor법을 제안하였고, 그 효과를 2경간 연속 강합성거더에 적용하여 검증하였다.

원전 페라이트 배관내의 원주방향 표면균열에 대한 ASME Code Z-Factor의 수정 (Modification of the ASME Code Z-Factor for Circumferential Surface Crack in Nuclear Ferritic Pipings)

  • Park, Y. H.;Y. K. Chung;W. Y. Koh;Lee, J. B.
    • Nuclear Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.185-196
    • /
    • 1996
  • 이 연구의 목적은 원자력발전소 페라이트 배관에 존재하는 원주방향 표면균열을 평가하는데 사용되는 ASME Code Z-Factor를 수정하는데 있다. ASME Code Z-Factor는 소성하중을 탄소성하중으로 보정하는 하중 보정 계수로서, 현재 사용되는 ASME Code Z-Factor는 최대하중을 과소평가하는 문제점이 있다. 이 연구에서는 먼저 기존의 SC. TNP방법이 수정되었으며, 그 이유는 기존의 SC. TNP 방법으로 예측된 최대허용하중이 실험에서 측정된 방법보다 약간 큰 결과를 주는 문제가 있기 때문이다. 이 수정된 SC. TNP 방법을 사용하여 페라이트 배관에 대한 새로운 Z-Factor를 개발하였다. 수정된 SC. TNP 방법의 타당성 과 새로 개발된 Z-Factor의 타당성을 원주방향 표면균열을 갖는 배관에 대한 실험 결과를 통해 조사하였다. 평 가결과는 수정된 SC. TNP 방법은 페라이트 및 오스테나이트 배관의 원주 방향 표면균열의 거동을 잘 예측할 수 있음을 보여 주며, 또한 수정된 SC. TNP 방법으로 구한 새로운 Z-Factor는 페라이트 배관에 존재하는 원주방향 표면균열의 거동을 잘 예측할 수 있음을 보여준다.

  • PDF

허실보사(虛實補瀉)에 대한 문헌적(文獻的) 고찰(考察) (A Study on Deficiency Syndrome, Excess Syndrome, Reinforcing Method and Reducing Method)

  • 양광열
    • 대한한의학회지
    • /
    • 제29권1호
    • /
    • pp.200-206
    • /
    • 2008
  • Objective : To establish a standard for discriminating between deficiency syndrome and excess syndrome and selecting reinforcing or reducing method. Methods :Deficiency syndrome and excess syndrome were divided into excess of pathogenic factor with sufficiency of vital energy syndrome, weakness of pathogenic factor with deficiency of vital energy syndrome and excess of pathogenic factor with deficiency of vital energy syndrome. Documentary survey was done for each case. Results : Excess of pathogenic factor with sufficiency of vital energy syndrome is an excess syndrome and a reducing method must be used. Weakness of pathogenic factor with deficiency of vital energy syndrome is a deficiency syndrome and a reinforcing method must be used. Excess of pathogenic factor with deficiency of vital energy syndrome is related to deficiency syndrome and a reinforcing method must mainly be used. Conclusions :Deficiency or sufficiency of vital energy is the standard for discriminating between deficiency syndrome and excess syndrome and selecting a reinforcing or reducing method.

  • PDF

지진계수를 고려한 제방의 사면안정에 관한 연구 (A Study on the Slope Stability of Embankment in Consideration of Seismic Coefficient)

  • 강우묵;지인택;이달원
    • 한국농공학회지
    • /
    • 제33권4호
    • /
    • pp.105-120
    • /
    • 1991
  • This study was performed to investigate the minimum safety factor of embankment in consideration of seismic coefficient by the psuedo-static analysis The variables were cohesion, the internal friction angle, angle of slope, height of seepage, height of embankment, depth of replacement The results obtained were compared with those by Fellenius method, simplified Bishop method and Janbu method. The results were summarized as follows: 1.The increasing rate of the minimum safety factor with the increasing of cohesion appeared larger in Fellenius method and Bishop method than in Janbu method. And that with the increasing of the internal friction angle appeared the lowest value in Janbu method. The minimum safety factor was influenced larger on the internal friction angle than on cohesion. 2.The variation of the minimum safety factor with the height of seepage at 0m and 5 m was nearly similar to Fellenius method, Bishop method and Janbu method. On the other hand, it was decreased suddenly at 25 m. 3.The minimum safety factor with the height of embankment was decreased remarkably under 10 m with the increasing of seismic coefficient. But, it was decreased slowly more than 10 m. As the height of embankment was low, the influence of cohesion appeared larger. 4.In heigher case of the depth of replacement, the phenomenon of reduction of the minimum safety factor appeared remarkably with seismic coefficient increased. And in lower case of the depth of replacement, the minimum safety factor was similar in Fellenius method and Bishop mehtod. But it appeared larger in Bishop method and Janbu method than in Fellenius method with the depth of replacement increased. 5.As the cohesion and the internal friction angle were large, the phenomenon of reduction of the minimum safety factor with the increasing of seismic coefficient appeared remarkably. Also, the influence of seismic coefficient in minimum safety factor appeared larger with the soil parameter increased. 6.When the seismic coefficient was considerated, investigation of the structural body on the slope stability appeared profitably in Fellenius method and Janbu method than in Bishop method.

  • PDF

해석방법에 따른 사면 안전율 비교 연구 (A Relative Study on Safe Factor by Different Analyses of Slope Stability)

  • 안준희;박춘식;장정욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.720-723
    • /
    • 2006
  • This study performed slope stability analysis by changing analysis methods and shear strength with the slope stability analysis program. The conclusions of the study are as follows. 1) The safe factor of clayey soil applied with Bishop's simple method turned out to be similar to or slightly higher than those of other methods, for both dry and saturated conditions. 2) The safe factor of sandy soil applied with GLE method turned out to be slightly higher than those of other methods. But when applied with Bishop's simple method, it appeared to be slightly higher than those of other methods. 3) The safe factor of ordinary soil applied with GLE method showed the highest result. 4) Janbu method showed the lowest safe factor among all the methods for the above three types of soils.

  • PDF

기술진보 측정방법에 관한 일고안 (A Study on Measuring Method in Technical Progress)

  • 박일근
    • 산업경영시스템학회지
    • /
    • 제3권3호
    • /
    • pp.59-66
    • /
    • 1980
  • The purpose of this paper to study on measuring method in technical progress. Technology is combination method of raw material and capital, land, labour. The first step to technical Progress is COBB-DOUGLAS production function, so technical progresses are important role in economic growth and development. General production function from Y=f(K, L, T) and COBB-DOUGLAS production function Y=${AK^I}{L^b}$ is first condition. Technical progress is saving of production factor In capital saving, labour saving, neutral saving. Marred Hicks Robinson has Insist on technical progress by each view of production factor, but, what is most excellent measuring method of technical progress\ulcorner I : productivity index method. II : Gross Production function method. Productivity method used in every products level in weight values, gross method function method used in production factor attributed to products. Above two measuring method has delicate problem in each input factor, substitution relation and production factor simultaneously linked each others This basic problem based on technical progress is not solubable in this time.

  • PDF

자동 양자이득 조정에 의한 퍼지 제어방식 (Fuzzy Control Method By Automatic Scaling Factor Tuning)

  • 강성호;임중규;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2807-2810
    • /
    • 2003
  • In this paper, we propose a fuzzy control method for improving the control performance by automatically tuning the scaling factor. The proposed method is that automatically tune the input scaling factor and the output scaling factor of fuzzy logic system through neural network. Used neural network is ADALINE (ADAptive Linear NEron) neural network with delayed input. ADALINE neural network has simple construct, superior learning capacity and small computation time. In order to verify the effectiveness of the proposed control method, we performed simulation. The results showed that the proposed control method improves considerably on the environment of the disturbance.

  • PDF

Wedge 이론을 적용한 사면안정해석의 평균 안전율에 관한 연구 (A study on the Average Factor of Safety in Slope Stability Being Applied to Wedge theory)

  • 김경진
    • 기술사
    • /
    • 제19권1호
    • /
    • pp.3-11
    • /
    • 1986
  • The analysis of Geotechnical stability problems by the limit equilibrium method involve assuming the shape of the failure and then investigating many surfaces of the shape to identify the one on which failure seems most likely to occur. These arbitrary assumptions most frequently concern to the locations or directions of side force on slice and the overall factor of safety is considered identical to the local factor of safety. In this paper, let the factor of safety of a slope at wedge block stage differently, when an upper part of the potential sliding mass has a simple active stress field and the lower part of the passive stress field and overall factor of safety is obtained by the average of local factor and computer program based on the modified wedge Method is proposed for this thesis. The new algorithm based on tile modified new method is made for estimating the safety factor of Earth Dam. Compared with conventional method for many cases tile average values of the factor of safety determined by the modified new method are very nearly the same. For all of the cases studied the difference was found 0.03. Finally this new method is thought to be very useful in slope stability analysis.

  • PDF