• Title/Summary/Keyword: Xylose Fermentation

Search Result 124, Processing Time 0.023 seconds

Two-step High Temperature Pretreatment Process for Bioethanol Production from Rape Stems (유채대의 이단 고온 처리에 의한 알콜 발효용 당화물 생산)

  • Han, Jae-Gun;Oh, Sung-Ho;Jeong, Myoung-Hoon;Kim, Seung-Seop;Seo, Hyeon-Beom;Jeong, Kyung-Hwan;Jang, Young-Seok;Kim, Il-Cheol;Lee, Hyeon-Yong
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.489-494
    • /
    • 2009
  • Two-step pretreatment process was investigated to efficiently hydrolyzed rape stems for obtaining fermentable sugars. The process was consisted of two consecutive steps as $200^{\circ}C$ and 15 MPa and $374^{\circ}C$ and 24 MPa with the flow rate of 5 mL/min. Under this condition, 5.5 (g/L) of glucose and 25.6 (g/L) of xylose were obtained from rape stems, showing 18% of glucose yield based on 25% cellulose in the rape stems. It was also found that this process could generate less amounts of toxic residues, such as HMF (Hydroxy- Methyl-Furfural) and other fulfural components during hydrolysis process. It could reaction maintain relatively high ethanol production yield as 90% of theoretical conversion yield from glucose. Therefore, this pretreatment process could be applied to hydrolyze other cellulosic and marine resources such as woods, stem and algae for bioethanol production.

Isolation of Bacillus sp. Producing Poly-$\gamma$-glutamic Acid with High Efficiency and Its Characterization (고효율 Poly-$\gamma$-Glutamic Acid생산 균주의 분리 및 생산 특성)

  • You Kyung-Ok;Oh You-Na;Kim Byung-Woo;Nam Soo-Wan;Jeon Sung-Jong;Kim Dong-Eun;Kim Young-Man;Kwon Hyun-Ju
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.200-206
    • /
    • 2005
  • A bacterium with high productivity of poly-$\gamma$-glutamic acid (PGA) was isolated from the traditional Korean seasoning, ChungKookJang. The 16s ribosomal RNA sequence of isolated strain showed 97.6, 98.9 and $90.3{\%}$ of similarity to those of Bacillus sp. WL-3, Bacillus subtilis; ENV1 and B amy-loliquefaciens (T), respectively. Accordingly, this bacterium was identified as a Bacillus sp. However, some biochemical characteristics of this strain were different from those of B. subtilis: D-xylose fermentation and glycogen utility were negative. Maximum production of PGA was achieved when it was grown aerobically in a culture medium containing glutamic acid ($3{\%}$) and fructose ($4{\%}$) as carbon sources. The volumetric yield of PGA reached up to 27 g/l in the optimum culture medium. These results suggest that the present strain can be applicable for industrial purposes such as a prototype strain for food or cosmetics industry.

Studies on Microbial Utilization of Agricultural Wastes (Part IV) Cellulosic Waste Materials as Substrate on the Production of Cellulosic Single Cell Protein. (농산폐자원의 미생물학적 이용에 관한 연구 (제육보) 섬유소단세포단백 생산에서의 천연기질의 이용성)

  • Bae, Moo;Ko, Young-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.1
    • /
    • pp.18-23
    • /
    • 1977
  • Experiments were carried out to pursue the availability and the feasibility of utilizable cellulosic materials as substrate for the production of cellulosic single cell protein. The resuluts were obtained as fellows. 1. Effects of carbolydrates as a sole carton source on the growth of Cellulomonas flavigena KIST 321 were examined. The result showed that cellulose and xylose would be most utlizable for cell mass production. 2. Alkaline treated waste papers and clothes resulted in good growth of the organism than intact ones did. However the waste papers as substrate of cellulosic fermentation were not digestible, even if the meterial was treated with alkalies. 3. Rice straw, rape straw and panic grass appeared to be good substrates for the cell mass production. 4. Leaves were proved to be a good substrate for the cell mass production, but wood sawdust was hardly digested by merely alkaline treatment. 5. When cellulosic wastes as the substrate were examined into the concentration of alkaline solution, the result suggested that the best productivity of cell mass from cellulosic materials was obtained on treatment with 0.8∼1.0% NaOH solution. 6. The productivity of cell mass was increased by washing out with water after alkaline treatment of newspaper, pine sawdust, lime sawdust and pine leaf.

  • PDF

Studies on the Production of Alcohol from Woods (목재(木材)를 이용(利用)한 Alcohol 생산(生産)에 관(關)한 연구(硏究))

  • Cheong, Jin Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.59 no.1
    • /
    • pp.67-91
    • /
    • 1983
  • In order to examine the alcohol production from softwoods (Pinus densiflora Sieb. et Zucc., Pinus rigida Miller, Larix leptolepis Gordon) and hardwoods (Alnus japonica Steud., Castanea crenata Sieb. et Zucc. Populus euramericana CV 214), chemical compositions were analyzed and conditions of acid hydrolysis with wood meals were established. Also strains which could remarkably decompose the cellulose were identified, and conditions of cellulase production of strains, characteristics of cellulase, and alcohol fermentation were examined. The results were summarized as follows. 1) In acid hydrolysis of wood, the high yield of reducing sugars was shown from 1.0% to 2.0% of hydrochloric acid and 2.0% of sulfuric acid. The highest yield was produced 23.4% at wood meals of Alnus japonica treated with 1.0% of hydrochloric acid. 2) The effect of raising the hydrolysis was good at $1.5kg/cm^2$, 30 times (acid/wood meal), and 45 min in treating hydrochloric acid and 30 min in treating sulfuric acid. 3) The pretreatments with concentrated sulfuric acid were more effective concentration ranged from 50% to 60% than that with hydrochloric acid and its concentration ranged from 50% to 60%. 4) The quantative analysis of sugar composition of acid hydrolysates revealed that glucose and arabinose were assayed 137.78mg and 68.24mg with Pinus densiflora, and 102.22mg and 65.89mg with Alnus janonica, respectively. Also xylose and galactose were derived. 5) The two strains of yeast which showed remarkably high alcohol productivity were Saccharomyces cerevisiae JAFM 101 and Sacch. cerevisiae var. ellipsoldeus JAFM 125. 6) The production of alcohol and the growth of yeasts were effective with the neutralization of acid hydrolysates by $CaCO_3$ and NaOH. Production of alcohol was excellent in being fermented between pH 4.5-5.5 at $30^{\circ}C$ and growth of yeasts between pH 5.0-6.0 at $24^{\circ}C$. 7) The production of alcohol was effective with the addition of 0.02% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, 0.02% $MnCl_2$. Growth of yeasts was effective with 0.04-0.06% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.2% $K_2HPO_4$ and $K_3PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, and 0.002% NaCl. 8) Among various vitamins, the production of alcohol was effective with the addition to pyridoxine and riboflavin, and the growth of yeasts with the addition to thiamin, Ca-pantothenate, and biotin. The production of aocohol was increased in 0.1% concentration of tannin and furfural, but mas decreased in above concentration. 9) In 100ml of fermented solution, alcohol and yeast were produced 2.201-2.275ml and 84-114mg for wood meals of Pinus densiflora, and 2.075-2.125ml and 104-128mg for that of Alnus japonica. Residual sugars were 0.55-0.60g and 0.60-0.65g for wood meals of Pinus densiflora and Alnus japonica, respectively, and pH varied from 3.3 to 3.6. 10) A strain of Trichoderma viride JJK. 107 was selected and identified as its having the highest activity of decomposing cellulose. 11) The highest cellulase production was good when CMCase incubated for 5 days at pH 6.0, $30^{\circ}C$ and xylanase at pH 5.0, $35^{\circ}C$. The optimum conditions of cellulase activity were proper in case of CMCase at pH 4.5, $50^{\circ}C$ and xylanase at pH 4.5, $40^{\circ}C$. 12) In fermentation with enzymatic hydrolysates, the peracetic acid treatment for delignification showed the best yields of alcohol and its ratio was effective with the addition of about 10 times. 13) The production of alcohol was excellent when wood meals and Koji of wheat bran was mixed with 10 to 8 and the 10g of wood meals of Pinus densiflora produced 2.01-2.14ml of alcohol and Alnus japonica 2.11-2.20ml.

  • PDF