Browse > Article

Two-step High Temperature Pretreatment Process for Bioethanol Production from Rape Stems  

Han, Jae-Gun (College of Bioscience & Biotechnology, Kangwon National University)
Oh, Sung-Ho (College of Bioscience & Biotechnology, Kangwon National University)
Jeong, Myoung-Hoon (College of Bioscience & Biotechnology, Kangwon National University)
Kim, Seung-Seop (College of Bioscience & Biotechnology, Kangwon National University)
Seo, Hyeon-Beom (Department of Biotechnology, Chungju National University)
Jeong, Kyung-Hwan (Department of Biotechnology, Chungju National University)
Jang, Young-Seok (Mokpo Experiment Station, National Institute of Crop Science, RDA)
Kim, Il-Cheol (Department of Biology, Chonnam National University)
Lee, Hyeon-Yong (College of Bioscience & Biotechnology, Kangwon National University)
Publication Information
KSBB Journal / v.24, no.5, 2009 , pp. 489-494 More about this Journal
Abstract
Two-step pretreatment process was investigated to efficiently hydrolyzed rape stems for obtaining fermentable sugars. The process was consisted of two consecutive steps as $200^{\circ}C$ and 15 MPa and $374^{\circ}C$ and 24 MPa with the flow rate of 5 mL/min. Under this condition, 5.5 (g/L) of glucose and 25.6 (g/L) of xylose were obtained from rape stems, showing 18% of glucose yield based on 25% cellulose in the rape stems. It was also found that this process could generate less amounts of toxic residues, such as HMF (Hydroxy- Methyl-Furfural) and other fulfural components during hydrolysis process. It could reaction maintain relatively high ethanol production yield as 90% of theoretical conversion yield from glucose. Therefore, this pretreatment process could be applied to hydrolyze other cellulosic and marine resources such as woods, stem and algae for bioethanol production.
Keywords
rape stems; two-step pretreatment; alcohol fermentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sandburg, T. and K. Bermont (2005) Bioenergy- Realizing the Potential. p. 113. Swedish Energy Agency press, Eskilstuna, Sweden
2 Saha, B. C. (2003) Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279-291   DOI   ScienceOn
3 Miyafuji, H. and S. Saka (2007) Bioethanol production fom lignocellulosics using supercritical water. ACS sym. Ser. 954: 422-433
4 Ferner, R. A. and J. O. Lephardr (1981) Examination of the themal decomposition of kraft pine lignin by fourier transform infrared evolved gas analysis. J. Agric. Food Chem. 29: 29-38   DOI
5 Gray, K. A. Zhao, L., and Emptage, M. (2006) Bioethanol. Curr. Opin. Chem. Biol. 10: 1-6   DOI   ScienceOn
6 Wyman, C. E. (1994) Alternative fulels from biomass and their impact on carbon dioxide accumulation. Appl. Biochem. Bioethanol. 45-46: 897-915   DOI
7 Sun, J. X., F. Xu, X. F. Sun, B. Xiao, and R. C. Sun (2005) Physico-chemical and thermal characterization of cellulose from barley straw. Polym Degrad Stabil. 88: 521-531   DOI   ScienceOn
8 Sassner, P., C. G. Martensson, M. Galbe, and G. Zacchi (2008) Steam pretreatment of H2SO4 impregmated Salix for the production of bioethanol. Bioresour Technol. 99: 137-145   DOI   ScienceOn
9 Faaij, A. P. C. (2006) Bio-energy in Europe:Changing technology choices. Energy Policy. 34: 322-342   DOI   ScienceOn
10 Silverstein, R. A., Y. Chen, R. R. Sharma-Shivappa, M. D. Boyette, and J. Osborne (2007) A comparison of chemical pretreatment methods for improving saccharofication of cotton stalks. Bioresour Technol. 98: 3000-3011   DOI   ScienceOn
11 Saulnier, L., C. Marot, E. Chanliaud, and J. F. Thibault (1995) Cell wall polysaccharide interaction in maize bran. Carbohydr. Polym. 26: 279-287   DOI   ScienceOn
12 Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, and G. Zacchi (1999) The generation of fermentation inhibitor during dilute and hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159   DOI   ScienceOn
13 Araque, E., C. Parra, J. Freer, D. Contreras, J. Rodriguez, R. Mendonc, and J. Benza (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radita D. Don to ethanol. Enzyme Microb. Technol. 43: 157-162   DOI   ScienceOn
14 Fangrui, M. and M. A. Hanna (1999) Biodiesel production:a review. Bioresour Technol. 70: 1-15   DOI   ScienceOn
15 Choi, J. W., H. J. Lim, K. S. Han, H. Y. Kang, and D. H. Choi (2005) Characterization of degradation features and degradative product of poplar wood (populus alba $\times$ glandulosa) by flow type-supercritical water treatment. J. Kor. For. En. 24: 39-46   ScienceOn
16 Kim, C. H., M. C. Kwon, S. A. Qadir, B. Hwang, J. H. Nam, and H. Y. Lee (2007) Toxicity reduction and improvement of anticancer activities from Rhodiola schalinensis A. Bor by ultra high pressure extracts process. Korean J. Medicinal Crop Sci. 6: 411-416
17 Beguin, P. and J. P. Aubert (1994) The biological degradation of cellulose. FEMS microbiol. Rev. 13: 25-58   DOI   ScienceOn
18 Linde, M., M. Galbe, and G. Zacchi (2008) Bioethanol production from non-starch carbohydrate residues in process stream from a dry-mill ethanol plant. Bioresour Technol. 99: 6505-6511   DOI   ScienceOn
19 Lishi, Y., Z. Hongman, C. Jingwen, L. Zengxiang, J. Qiang, J. Honghua, and H. He (2008) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresour Technol. 100: 1803-1808   DOI   ScienceOn
20 Chaogang, L. and C. E. Wyman (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol. 96: 1978-1985   DOI   ScienceOn