• Title/Summary/Keyword: Xylitol-resistant

Search Result 6, Processing Time 0.039 seconds

Comparison of Virulence in Xylitol-Sensitive and -Resistant Streptococcus mutans to Different Concentrations of Xylitol (자일리톨 처리 농도에 따른 자일리톨 감성균주와 내성균주의 독력 비교)

  • Im, Sang-Uk;Ahn, Sang-Hun;Song, Keun-Bae
    • Journal of dental hygiene science
    • /
    • v.11 no.5
    • /
    • pp.411-416
    • /
    • 2011
  • Streptococcus mutans (S. mutans) is the major causative bacteria in dental caries. Xylitol is effective anticarious natural sugar substitute by inhibiting the virulence of S. mutans. However, long-term xylitol consumption leads to the emergence of the xylitol-resistant (XR) strains which means xylitol is no more inhibited their growth. We therefore confirmed the general characteristics and the virulence factors of the xylitol-sensitive (XS) and XR S. mutans for different concentrations of xylitol. S. mutans KCTC 3065 was maintained in TYE medium containing 0.4% glucose with 1% xylitol during 30 days at $37^{\circ}C$, 10% $CO_2$ to form XR strain. The strains were transferred to new medium every 24 hr and the same procedures without xylitol were repeated for the formation of XS S. mutans. Both XS and XR were cultured in different concentrations of xylitol (0%, 0.1% and 1%) then, cell growth, acid production and mRNA expression of gtf genes were analyzed. Xylitol reduced the cell growth of XS S. mutans in dose-dependent manner, but not reduced that of XR. Xylitol inhibited acid production of XS in dose-dependent manner, but not inhibited that of XR. Xylitol reduced the gtfB and gtfD mRNA expression of XS S. mutans which genes synthesized soluble and insoluble extracellular polysaccharides, but not reduced that of XR. These results indicate that the virulence of XR S. mutans is different characters of XS strains, which suggests XR strains may have different cariogenicity of XS strains. Further study is needed to explain the mechanism related to extracellular polysaccharide in the XR strains.

A STUDY ON THE CELL PROPERTY OF XYLITOL-RESISTANT STREPTOCOCCUS MUTANS AND XYLITOL-SENSITIVE STREPTOCOCCUS MUTANS (Xylitol-resistant Streptococcus mutans와 xylitol-sensitive Streptococcus mutans의 세포 성질에 관한 비교연구)

  • Lee, Hong-Mo;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Hahn, Se-Hyun;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.554-562
    • /
    • 2003
  • Xylitol has been used as sugar substitute to prevent dental caries. It is not fermented by most dental plaque bacteria and interferes with the growth of mutans streptococci. Therefore the production of acidic metabolites and the growth of mutans streptococci are inhibited. S. mutans strains which are inhibited to grow under the presence of xylitol are referred as xylitol-sensitive ($X^S$) strains. However, experimental and clinical studies have shown that there were mutated groups of S. mutans strains that are not affected by xylitol. They are referred as xylitol-resistant($X^R$) strains. The aim of the present study was to investigate that emergence of $X^R$ strain would effect on the anticariogenecity of xylitol by comparing the growth rate, the extracellular pH, hydroxyapatite adhesion and the agglutination of the $X^R/X^S$ strains. Overall we came out with following results : 1. No difference in the growth rate and the extracellular pH was found between the $X^S$ strain and the $X^R$ strain. 2. No difference in adhesion to hydroxyapatite surface was found between the $X^R$ strain and the $X^S$ strain (p>0.05) and adhesion of the $X^S$ strain was greater than that of $X^R$ strain in the sucrose-dependent adhesion to hydroxyapatite (p<0.05). 3. The $X^R$ strain was agglutinated in the lower concentration of saliva than that of $X^S$ strains.

  • PDF

Quantitative comparison of mRNA expression of glucosyltransferase (GTF) between $xylitol-resistant(X^R)$ and $xylitol-sensitive(X^S)$ mutans streptococci (Mutans streptococci의 자일리톨 내성균주와 감성균주의 glucosyltransferase mRNA의 정량적 비교 연구)

  • Lee, MI-Na;Kim, Young-Jae;Lee, Sung-Hoon;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.77-84
    • /
    • 2006
  • Since the long-term exposure of mutans streptococci to xylitol is known to select for xylitol-resistant $(X^R)$ natural mutants, the occurrence and survival of such $(X^R)$ strains were performed in batch culture methods. The aim of the study was to compare the differentiation and quantification of mRNA expression of the gtf genes of $X^R\;and\;X^S$ mutans streptococci. Using a real-time reverse-transcription polymerase chain reaction, the expression of each gtf was determined. In $X^R$ strains, the relative levels of transcription of gtfB and gtfC were decreased while that of gtfD was increased, suggesting the presence of independent promoters. It also suggested that mutation related to production of glucosyltransferase occurred under the exposure of xylitol could explain the caries-preventive mechanisms of xylitol.

  • PDF

A review of effect and how to use xylitol (자일리톨의 효과 및 활용방법에 대한 고찰)

  • Shin, Kyoung-Hee;Ahn, Yong-Soon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.10 no.6
    • /
    • pp.1095-1105
    • /
    • 2010
  • Objectives : This paper is designed to help the public prevent their future dental caries, based on the studies of xylitol about it's efficacy and effectiveness, and its appropriate usage. Methods : This study of xylitol on the basis of existing research papers and literature is not only to learn about the mechanism of what xylitol acts, but also to search the effectiveness of incompleteness of xylitol-containing foods, bacterial infection between xylitol and mother-baby, and the side-effects of xylitol. Results : 1. Xylitol's continuous intake of teeth effects the decrease of calculus amount, cleanness of teeth, as well as the remineralization process. The xylitol effect varies depending on the weight of xylitol, which has no effect on root caries. 2. Mouth gargle solution is higher resistant against acids; recalcification is significantly reduced; and remineralization effect represents. 3. It is reported that regular consumption of xylitol by mothers just during two years after birth has significantly decreased the spread possibility of mutans streptococcei. 4. The reduction of dental caries by xylitol is happened by its restraining the growth of bacteria resource caries, with their presence in amount of uncontrolled growth. 5. When a small amount of eating xylitol is absorbed slowly into gastrointestinal tract, being followed by glucose metabolism in the liver, while its excessive amount of eating can cause gastrointestinal problems. Conclusion : Dental hygienists should be required to provide dental information to the public on the basis of academic knowledge. In situation that one is not yet sure of xylitol on solid and multifaceted researches, there must be needed more accurate and detailed reviews on the side-effects of xylitol and the overall impact on the oral environments.

Xylitol Down-Regulates $1{\alpha},25$-Dihydroxy Vitamin D3-induced Osteoclastogenesis via in Part the Inhibition of RANKL Expression in Osteoblasts

  • Ohk, Seung-Ho;Jeong, Hyunjoo;Kim, Jong-Pill;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Lee, Syng-Ill
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.127-134
    • /
    • 2013
  • Xylitol is a sugar alcohol with a variety of functions including bactericidal and anticariogenic effects. However, the cellular mechanisms underlying the role of xylitol in bone metabolism are not yet clarified. In our present study, we exploited the physiological role of xylitol on osteoclast differentiation in a co-culture system of osteoblastic and RAW 264.7 cells. Xylitol treatment of these co-cultures reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells induced by 10 nM $1{\alpha},25(OH)_2D_3$ in a dose-dependent manner. A cell viability test revealed no marked cellular damage by up to 100 mM of xylitol. Exposure of osteoblastic cells to xylitol decreased RANKL, but not OPG, mRNA expression in the presence of $10^{-8}M$ $1{\alpha},25(OH)_2D_3$ in a dose-dependent manner. Furthermore, bone resorption activity, assessed on bone slices in the coculture system, was found to be dramatically decreased with increasing xylitol concentrations. RANKL and OPG proteins were assayed by ELISA and the soluble RANKL (sRANKL) concentration was decreased with an increased xylitol concentration. In contrast, OPG was unaltered by any xylitol concentration in this assay. These results indicate that xylitol inhibits $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis by reducing the sRANKL/OPG expression ratio in osteoblastic cells.

Comparison of characteristics of xylitol-sensitive and xylitol-resistant Streptococcus mutans by use of various carbohydrates (다양한 탄수화물 분해에 따른 xylitol-sensitive Streptococcus mutans와 xylitol-resistant Streptococcus mutans의 특성 비교)

  • Kim, Ji-Hye;Lee, Young-Eun;Ahn, Sang-Hun;Choi, Youn-Hee;Song, Keun-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4450-4458
    • /
    • 2011
  • The aim of this study was to investigate the capacity of the xylitol-sensitive(Xs) and xylitol-resistant(Xr) S. mutans to induce dental caries in the presence of various carbohydrate. S. mutans KCTC3065 was cultured with 0.4% glucose and 1% xylitol in TYE medium for 30 days at $37^{\circ}C$, 10% $CO_2$ to form Xr S. mutans. Both Xs and Xr strains were cultured in four different carbohydrate environments; 0.5% glucose containing basal culture TYE medium(G-TYE), G-TYE plus 0.5% sucorse, G-TYE plus 0.5% fructose, G-TYE plus 0.5% maltose. Then cell growth, acid production, and extracellular polysaccharides synthesis were analyzed. The final growth level and extracellular polysaccharides contents in the Xr strain were significantly lower than in the Xs strain in all carbohydrates except fructose. While, acid production was no significantly difference between Xs and Xr strain. These results indicate that the virulence of Xr strains is significantly lower than that of Xs strains, which supports Xr strains may be less cariogenic than Xs strains.