• Title/Summary/Keyword: Xe Lamp

Search Result 88, Processing Time 0.032 seconds

Emission Characteristics of Flat Fluorescent Lamp for LCD Backlight Using Inert Gas Mixture

  • Heo, Sung-Taek;Lee, Yang-Kyu;Kang, Jong-Hyun;Yoon, Seung-Il;Oh, Myung-Hoon;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1522-1525
    • /
    • 2007
  • In this study, flat fluorescent lamps (FFLs) having surface discharge structures was fabricated by screen printing technique and were studied using spectraradiometer and square pulse power supply. Two types of FFLs having different shapes of electrodes (crosstype and line-type structure) were compared with variation of discharge shape and mixed gas ratio.

  • PDF

Discharge characteristics of FFL as applied voltage variation (인가 전압의 변화에 따른 FFL(Flat Fluorescent Lamp)의 방전특성)

  • 윤성현;박철현;조민정;임민수;권순석;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.379-382
    • /
    • 2000
  • The characteristics of Xe discharge lamp(Mercuryless lamp) are described in this paper. In this paper, FFL is operated by sine wave and pulsed source. We apply V-Q Lissajous' figure for the discharge measurements of FFL which has the electrodes covered with dielectric. When FFL is operated by sine wave source, the characteristics are similar to DBD(Dielectric Barrier Discharge) and SD(Silent Discharge). And we compared the characteristics of FFL which is operated with sine wave and pulsed discharge by using V-Q Lissajous' figure method. When FFL is operated with pulsed, the discharge current flows after the applied voltage is risen. As the duty ratio increases the electric field becomes strong and much more xenon ions are produced. And the number of metastable xenon atoms seem to increase, therefore, the phosphor radiation after the cut off of voltage increases compared with the first peak of radiation. Consequently, the 172㎚ radiation becomes strong as the duty ratio increases.

  • PDF

Electrooptic Characteristics of Xe-type Flat Fluorescent Lamps Studied by a Q-V Lissajous Method (Q-V Lissajous 방법을 이용한 Xe형 평판형 형광램프의 전기광학 특성 평가)

  • Kim, Young-Youb;Yu, Mi-Yeon;Ko, Jae-Hyeon;Ryu, Si-Hong;Lee, Seong-Eui
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.165-168
    • /
    • 2007
  • Electrooptic characteristics of Xe-type flat fluorescent lamps (FFL) have been investigated by using a Q-V Lissajous method. It was found that the luminance of the Mgo-coated FFL became more than doubled compared to normal FFLs operated at the same driving voltage, indicating the possibility of the efficacy improvement in the MgO-coated FFLs. Change in the driving condition, in particular, the duty ratio had effects on the electrooptic properties, and it was found that the duty ratio of 50% was the optimum condition from the viewpoints of the efficacy and the lamp voltage.

  • PDF

The ballast for mercury-free lamp with Xe (Xe(제논)을 이용한 무수은 면광원 안정기)

  • Jeong, Hye-Man;Park, Dong-Hyeok;Kim, Jong-Hyeon;Min, Byeong-Deok;Song, Ui-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.351-353
    • /
    • 2008
  • 최근에 환경친화적인 관점에서 많은 형태의 무수은을 이용한 형광램프가 연구되어오고 있다. 그 중에서도 제논을 이용한 형광램프는 수은을 대체하는 방전기체의 조건을 만족하고 있다. 따라서 제논을 이용한 면광원의 구동 시 지금의 수은이 들어간 광원의 구동에 있어서 안정기요건이 차이가 있으므로, 본 논문에서 제논을 이용한 면광원을 위한 안정기를 제안한다. 제안된 면광원 안정기는 크게 AC입력 측의 PFC (power factor correction)부분과 면광원을 구동하는 인버터 부분으로 구성되어있다. 특히, 인버터 부분에서는 제논 면광원의 특성에 대응하기 위해서 정전력회로, 아크 방지 기동회로 등이 포함되어 있다.

  • PDF

Improvements of the luminous efficiency of mercury-free fluorescent lamps via structural and complex gas mixture changes

  • Oh, Byung-Joo;Jung, Jae-Chul;Seo, In-Woo;Kim, Hyuk;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.809-812
    • /
    • 2008
  • Structural parameter variation effects (changing the coplanar gap under different discharge dimensions) and use of complex gas mixtures (He, Ne, Ar and Xe) in mercury-free fluorescent lamps are studied in this paper. Pure Neon gas is the best buffer gas for obtaining high luminous efficiency in mercury-free fluorescent lamps. It is shown that with a shorter coplanar gap (30mm), a high luminous efficiency can be obtained at low operating voltage, as well as high luminance uniformity and stable discharge with a Ne-Xe 20% gas mixture.

  • PDF

The Study on Optical Properties of Xenon ICP Lamp Dependently on Gas Pressure and Input Power (ICP 제논 램프의 가스 압력과 공급 전력에 따른 광학적 특성연구)

  • Choi, Gi-Seung;Lee, Seong-Jin;Lee, Jung-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1659-1660
    • /
    • 2006
  • After end of the 20th environmental problem was became issue. So about mercury free lighting sources are being studied very much. In this paper, a mercury and electrode free bulb was designed. in this bulb was injected mixed of Xe, Ne and Kr Gases. and then the bulb was discharged by 13.56MHz RF Power after spectrum, color coordinates and brightness were measured by spectrum meter CS-1000. Measured results were compared and analyzed, also analysis was able to do a characteristic of a gas defensive fight in proportion to a mixing ratio. Therefore the most of high brightness which was 4500cd/m2 was gained in 1:1 ratio of Xe:Ne at 60W input power.

  • PDF

Discharge Characteristics of Surface Discharge Type FFL for LCD Backlighting (LCD 백라이트용 면방전형 FFL의 방전 특성)

  • Lim, M.S.;Yun, S.H.;Shin, Y.S.;Jung, D.Y.;Kwon, S.S.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1786-1788
    • /
    • 1999
  • In this paper, we studied Surface Discharge Type Flat Fluorescent Lamp with High Luminance for LCD Backlighting, Liquid Crystal display(LCDs) demand the use of fluorescent lamp as the backlighting source. This lamp is Surface Discharge Type structure with a pair of Sodalime glass, insulator layer, phosphor layer, and Xe gas gap. In spite of its simple structure, the lamp has uniform and stable discharge over entire volume. Till now, we measured the current-voltage(V-I), Firing Voltage, Sustain Voltage for 0.5mm, 1mm electrode gap. In experiment result, long gap cell structure cause high firing voltage. The rising in firing voltage in long gap structure could not be explained by paschen's law because of non-uniform electric field.

  • PDF

Photoemission Electron Micro-spectroscopic Study of the Conductive Layer of a CVD Diamond (001)$2{\times}1$ Surface

  • Kono, S.;Saitou, T.;Kawata, H.;Goto, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.7-8
    • /
    • 2010
  • The surface conductive layer (SCL) of chemical vapor deposition (CVD) diamonds has attracting much interest. However, neither photoemission electron microscopic (PEEM) nor micro-spectroscopic (PEEMS) information is available so far. Since SCL retains in an ultra-high vacuum (UHV) condition, PEEM or PEEMS study will give an insight of SCL, which is the subject of the present study. The sample was made on a Ib-type HTHP diamond (001) substrate by non-doping CVD growthin a DC-plasma deposition chamber. The SCL properties of the sample in air were; a few tens K/Sq. in sheet resistance, ${\sim}180\;cm^2/vs$ in Hall mobility, ${\sim}2{\times}10^{12}/cm^2$ in carrier concentration. The root-square-mean surface roughness (Rq) of the sample was ~0.2nm as checked by AFM. A $2{\times}1$ LEED pattern and a sheet resistance of several hundreds K/Sq. in UHV were checked in a UHV chamber with an in-situ resist-meter [1]. The sample was then installed in a commercial PEEM/S apparatus (Omicron FOCUS IS-PEEM) which was composed of electro-static-lens optics together with an electron energy-analyzer. The presence of SCL was regularly monitored by measuring resistance between two electrodes (colloidal graphite) pasted on the two ends of sample surface. Figure 1 shows two PEEM images of a same area of the sample; a) is excited with a Hg-lamp and b) with a Xe-lamp. The maximum photon energy of the Hg-lamp is ~4.9 eV which is smaller that the band gap energy ($E_G=5.5\;eV$) of diamond and the maximum photon energy of the Xe-lamp is ~6.2 eV which is larger than $E_G$. The image that appear with the Hg-lamp can be due to photo-excitation to unoccupied states of the hydrogen-terminated negative electron affinity (NEA) diamond surface [2]. Secondary electron energy distribution of the white background of Figs.1a) and b) indeed shows that the whole surface is NEA except a large black dot on the upper center. However, Figs.1a) and 1b) show several features that are qualitatively different from each other. Some of the differences are the followings: the two main dark lines A and B in Fig.1b) are not at all obvious and the white lines B and C in Fig.1b) appear to be dark lines in Fig.1a). A PEEMS analysis of secondary electron energy distribution showed that all of the features A-D have negative electron affinity with marginal differences among them. These differences can be attributed to differences in the details of energy band bending underneath the surface present in SCL [3].

  • PDF

수열합성법에 기초한 질소가 도핑된 TiO2의 합성 및 특성연구

  • Jeong, Gyeong-Mun;Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.284-284
    • /
    • 2013
  • 최근연구에 의하면 가시광선에 활성을 띄는 TiO2 개발은 중요한 연구 과제이다. 우리는 몇 가지 아민류를 이용해 수열합성법으로 TiO2에 질소를 도핑 함으로써 그 가시광선 활성을 연구하였다. 그 특성연구로서 XRD, SEM, TEM을 통해 구조와 morphology을 나타내었으며, EDX와 XPS를 통해 질소도핑 유무를 밝혔다. UV-Visible 분광기를 통해서 시료 각각의 가시광선영역에서의 흡수 유무를 확인 하였으며, 마지막으로 가시광선 영역에서 광촉매 활성을 알아보기 위해서, 광원으로 Xe-lamp를 이용, methylene blue를 분해해 그 농도를 분석하여 가시광활성을 비교 분석하였다.

  • PDF

Discharge characteristics of a Flat Fluorescent Lamp(FFL) contanining Penning gases

  • Lee, Sang-Mok;Cho, Yong;Jung, Sang-Kooun;Jeong, Byoung-Hyun;Jeong, Yun-Cheol;Kwak, Min-Gi;Sohn, Sang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.675-678
    • /
    • 2006
  • We developed a Flat Fluorescent Lamp(FFL) with a high luminance by using the same discharge mode as PDP. Our FFL has the simple and unique structure where the glass substrates are used as dielectric layers. The panel has a striped line shape of 7 inch diagonal size. The Xe-Ne-He mixture gas was used to generate the plasma, and the gas discharge characteristics under both total gas pressure and partial gas pressure were investigated. The panel showed a maximum high luminance $7,270cd/m^2$ under bias of 20KHz pulse of 3KV.

  • PDF