• Title/Summary/Keyword: XRD and FT-IR

Search Result 582, Processing Time 0.017 seconds

Preparation of AC/TiO2 Composites from Activated Carbon Modified by HNO3 and Their Photocatalytic Activity

  • Chen, Ming-Liang;Oh, Won-Chun
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • In this work, activated carbon (AC) after $HNO_3$ modification was used as the support during the production of supported $TiO_2$ to increase the high deposition efficiency and the photocatalytic activity. The results of $N_2$ adsorption showed that the BET surface area of samples decreased with an increasing of the concentration of $HNO_3$ due to the penetration of $TiO_2$. From XRD data, a single crystal structure of anatase peak was observed in diffraction patterns for the AC coated with titanium complexes. From the SEM results, almost all particles were aggregated with each other at the carbon surface and AC was covered with $TiO_2$ particles in all of the samples. The EDX spectra show the presence of C, O, Ti and other elements. It was also observed a decreasing of amount of C content with increasing Ti and O content from the EDX. The results of FT-IR revealed that the modified AC contained more surface oxygen bearing groups than that of the original AC. The effect of surface acidity and basity calculated from Boehm titration method was also evaluated from correlations as a function of NaOH, $NaHCO_3$, and $Na_2CO_3$ uptake. The surface modification of AC by $HNO_3$ leads to an increase in the catalytic efficiency of AC/$TiO_2$ catalysts, and the catalytic efficiency increases with increasing of $HNO_3$ concentration.

Poly(vinylidene fluoride) Piezoelectric Film Characteristics by Poling Conditions for Distributed Tactile Sensor (분포형 촉각센서를 위한 압전성 폴리(비닐리덴 플루오라이드) 필름의 극화 특성)

  • Lee Kyungsub;Kim Dongouk;Kim Hyungtae;Jung Kwangmok;Choi Hyoukryeol;Nam Jae-Do
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.361-366
    • /
    • 2004
  • The poling characteristics of PVDF (poly(vinylidene fluoride)) film was investigated by measuring the electric voltage generated by the external load for the distributed tactile sensor applications. The poling conditions for the PVDF films were controlled by changing temperature and electric field, and the resulting crystal structure of the $\beta$-phase crystal was confirmed by FT-IR, DSC, and XRD experiments. The $\beta$-phase crystal was increased with the poling temperature and poling voltage, and subsequently the permittivity of the Poled PVDF films was increased. Finally, the prototype tactile sensor was tested by a 8 $\times$ 8 may circuit exhibiting high voltage signal for the highly poled PVDF films.

Synthesis of Silicon Carbide Powder Using Recovered Silicon from Solar Waste Silicon Wafer (태양광 폐실리콘 웨이퍼 회수 실리콘을 활용한 탄화규소 분말 합성)

  • Lee, Yoonjoo;Kwon, Oh-Kyu;Sun, Ju-Hyeong;Jang, Geun-Yong;Choi, Joon-Chul;Kwon, Wooteck
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.52-58
    • /
    • 2022
  • Silicon carbide powder was prepared from carbon black and silicon recovered from waste solar panels. In the solar power generation market, the number of crystalline silicon modules exceeds 90%. As the expiration date of a photovoltaic module arrives, the development of technology for recovering and utilizing silicon is very important from an environmental and economic point of view. In this study, silicon was recovered as silicon carbide from waste solar panels: 99.99% silicon powder was recovered through purification from a 95.74% purity waste silicon wafer. To examine the synthesis characteristics of SiC powder, purified 99.99% silicon powder and carbon powder were mixed and heat-treated (1,300, 1,400 and 1,500 ℃) in an Ar atmosphere. The characteristics of silicon and silicon carbide powders were analyzed using particle size distribution analyzer, XRD, SEM, ICP, FT-IR, and Raman analysis.

The effect of 4-hexylresorcinol on xenograft degradation in a rat calvarial defect model

  • Kang, Yei-Jin;Noh, Ji-Eun;Lee, Myung-Jin;Chae, Weon-Sik;Lee, Si Young;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.29.1-29.9
    • /
    • 2016
  • Background: The objective of this study was to evaluate xenograft degradation velocity when treated with 4-hexylresorcinol (4HR). Methods: The scapula of a cow was purchased from a local grocery, and discs (diameter 8 mm, thickness 1 mm) were prepared by trephine bur. Discs treated with 4HR were used as the experimental group. Untreated discs were used as the control. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), antibacterial test, endotoxin test, and scanning electron microscopy (SEM) were performed on the discs. In vivo degradation was evaluated by the rat calvarial defect model. Results: The XRD and FT-IR results demonstrated successful incorporation of 4HR into the bovine bone. The experimental disc showed antibacterial properties. The endotoxin test yielded results below the level of endotoxin contamination. In the SEM exam, the surface of the experimental group showed needle-shaped crystal and spreading of RAW264.7 cells. In the animal experiments, the amount of residual graft was significantly smaller in the experimental group compared to the control group (P = 0.003). Conclusions: In this study, 4HR was successfully incorporated into bovine bone, and 4HR-incorporated bovine bone had antibacterial properties. In vivo experiments demonstrated that 4HR-incorporated bovine bone showed more rapid degradation than untreated bovine bone.

Effect of Cross-linking Treatment of Lyocell Fabric on Carbon Fabric Properties (리오셀 섬유의 가교 처리가 탄소 직물 특성에 미치는 영향)

  • Lee, Su-Oh;Park, Gil-Young;Kim, Woo-Sung;Hwang, Tae-Kyung;Kim, Yun-Chul;Seo, Sang-Kyu;Chung, Yong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.21-27
    • /
    • 2019
  • Cellulose-based carbon fabrics are used in aerospace nozzles have low thermal conductivity and high ablation resistance. However, there is a disadvantage in that the weight is reduced by 70~90% in the pyrolysis process and graphitization process and the residual rate is low when the final carbon fabric is produced. In this study, phosphoric acid as a phosphorus flame retardant and Citric acid as a cross-linking agent were treated on the lyocell fabrics. After that the functional groups were identified and thermal properties were confirmed by FT-IR, XRD and TGA. The yields of the final carbon fabrics were also compared through the pyrolysis and graphitization process. The graphitized yield increased to 8.1% with increasing citric acid to 16 wt% added.

Adsorption of Nitrogen Dioxide on Transition-Metal-Oxide-Incorporated Hydrotalcites (전이금속 산화물이 고정된 하이드로탈사이트에 이산화질소 흡착)

  • Park, Ji Won;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1029-1038
    • /
    • 2008
  • Transition-metal-oxide-incorporated hydrotalcites were prepared by hydrothermal reaction of their synthetic mixtures containing precursors of transition metal oxides and their properties of nitrogen dioxide adsorption was investigated. The dispersion of transition metal oxides on the hydrotalcites and the amount and the state of nitrogen dioxide adsorbed on them were examined by using XRD, SEM, XPS, nitrogen adsorption, a gravimetric adsorption system, FT-IR spectroscopy and temperature programmed desorption techniques. Transition metal oxides were mainly incorporated on their surface and the incorporation of iron and nickel oxides to the hydrotalcites increased their adsorption amounts of nitrogen dioxide. The dispersion of iron oxide on the hydrotalcites was effective in increasing the amount of nitrogen dioxide adsorption, while too much amount of iron oxide incorporation reduced the amount of nitrogen dioxide adsorption due to masking of surface basic sites by agglomerated iron oxide. Although the incorporation of iron oxide to the hydrotalcites lowered the adsorption strength of nitrogen dioxide, the incorporation of it with a proper amount enhanced the amount of nitrogen dioxide adsorption and the stability against the hydrothermal treatment.

Gas Permeation Properties of LDH-filled PTMSP Composite Membranes (LDH를 함유한 PTMSP 복합막의 기체투과 특성)

  • Jeong, Yeon-Eim;Hong, Se Lyung
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.309-317
    • /
    • 2012
  • In this study, PTMSP/LDH composite membranes were prepared by the solution intercalation method with 1, 3, and 5 wt% LDH contents to PTMSP. To investigate the physico-chemical characteristics of composite membranes, the analytical methods such as FT-IR, TGA, XRD, UTM, and SEM have been utilized, and the gas permeability and selectivity properties of $H_2$, $N_2$, and $CO_2$ were evaluated. The permeability of the PTMSP/LDH composite membranes decreased as LDH content increased and the selectivity $H_2$ and $CO_2$ showed the maximum value at 5 wt% of LDH content. Permeability of PTMSP/LDH composite membrane increased as the gas permeation pressure increased. The difference of the increase in gas permeation pressure of the permeability of PTMSP/LDH composite membrane was slightly smaller than of PTMSP membrane.

Gas Permeation Properties of Ethylene Vinyl Acetate/Co-Al Layered Double Hydroxide Nanocomposite Membranes (Ethylene Vinyl Acetate/Co-Al Layered Double Hydroxide 나노복합막의 기체 투과 성질)

  • Kang, Sung-Young;Lee, Hyuu-Kyung
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.290-296
    • /
    • 2010
  • Ethylene vinyl acetate (EVA-28)/Co-Al LDH nanocomposite membranes were prepared by solution intercalation using organically modified LDH. LDH was made organophilic by the intercalation of dodecyl sulfate (DS) anion in the interlayer. The prepared membranes were characterized using XRD, FT-IR and SEM. Gas permeability of EVA/LDH nanocomposite membranes with LDH content of 1, 3, and 5 w% was studied for $O_2$ and $CO_2$ at pressure of 3, 4, and 5 bar. The permeability of $O_2$ and $CO_2$ was minimum for nanocomposite membrane with 1 wt% LDH and increased with increasing LDH content, which is presumably due to aggregation of LDH filler. The selectivity of $CO_2$ for $O_2$ showed the maximum value at 1 wt% of LDH content and decreased thereafter.

Synthesis and Characterization of Transparent Copolyimide Films (I) (투명한 폴리이미드 공중합체 필름의 합성과 특성 연구 (I))

  • Park, Jong-Su;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.580-586
    • /
    • 2008
  • Copolyimides were synthesized from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 1,3-bis(3-aminophenoxy)benzene (BAPB) with different mole ratios of 2,2-bis[4-(4-aminophenoxy)pheny1]hexafluoropropane (BAPP). The solution cast film of poly(amic acid) (PAA) was heat treated at different temperatures to create copolyimide films. The PI copolymer films were found to exhibit good optical transparencies. The thermomechanical properties, morphology, and optical transparency of PI films were examined using fourier transform infrared spectroscopy (FT-IR), wide-angle X-ray diffraction (XRD), scanning electron microscopes (SEM), differential scanning calorimeter(DSC), thermo-gravimetric analyzer (TGA), universal tensile machine (UTM), and IN - Vis. spectrometer. The glass transition temperature ($T_g$), ultimate strength, and initial modulus linearly increased with increasing BAPP mole fraction. However, thermal stability($T_D{^i}$) of the copolyimide remains constant regardless of BAPP loadings. It was found, however, that the optical transparency decreases slightly upon increasing the BAPP content because of the formation of the charge transfer complexes.

Study of the Crystal Structure of a Lyocell Precursor for Carbon Fibers (탄소섬유용 리오셀 전구체의 결정구조에 관한 연구)

  • Park, Gil-Young;Kim, Woo-Sung;Lee, Su-Oh;Hwang, Tae-Kyung;Kim, Yun-Chul;Seo, Sang-Kyu;Chung, Yong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.36-42
    • /
    • 2019
  • In this study, the pre-treatment of lyocell fabrics was performed using phosphoric acid (PA) as a phosphorus flame retardant and melamine resin (MR) as a cross-linking agent to fabricate carbon fabrics using lyocell fibers. The physical and chemical changes were investigated by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD) and weight analysis. We confirmed that the weight yield of the carbon fabrics compared to the untreated fabrics increased by 14.7%, and width and length yield of the fabrics increased by 15% and 15.5%, respectively. This may be due to the effect of promoting the dehydration reaction of cellulose, forming char on the fiber surface, which induces a crosslinking reaction in the cellulose molecule and stabilizes the structure upon pyrolysis.