• Title/Summary/Keyword: XRD Diffraction

Search Result 2,761, Processing Time 0.036 seconds

Analysis of the Changes of composition of Hardened Cement at High Temperature by X-Ray Diffraction (X-선 회절 분석을 통한 고온 피해 시멘트 경화체의 성분 변화 분석)

  • Ji, Woo-Ram;Park, Ji-Woong;Shin, Ki-Don;Lee, Gun-Cheol;Heo, Young-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.113-114
    • /
    • 2017
  • In this study, the change of composition of cement hardened at high temperature through XRD was observed. The specimen was made of cement paste and the heating rate condition was applied at rapid thermal annealing (10.0℃ / min). The decrease of calcium hydroxide was not confirmed, but the calcium carbonate tended to be impossible or decreased after 800℃. Calcium silicate and larnite were observed to increase with increasing temperature. It is considered that silicic acid, which is a stable structure due to the decomposition of calcium silicate, is changed into a phase such as lime.

  • PDF

Fabrication of $YMnO_3$/Si(100) Structures by RF Magnetron Sputtering (스퍼터링을 이용한 $YMnO_3$/Si(100) 구조의 제작)

  • 김진규;김채규;정순원;김용성;이남열;김광호;유병곤;이원재;유인규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.429-432
    • /
    • 1999
  • The growth of $\textrm{YMnO}_3$ films directly on Si(100) substrates by RF magnetron sputtering system has been performed. The structural properties of $\textrm{YMnO}_3$ films on Si(100) by rapid thermal annealing(RTA) analysed by XRD(X-ray diffraction). The c-axis oriented $\textrm{YMnO}_3$ peaks were observed deposited in $\textrm{YMnO}_3$/Si(100) structure at RF power of 100W and at a temperature range of $840^{\circ}C$~$870^{\circ}C$ in oxygen ambient.

  • PDF

Light emission properties of ZnO thin films grown by pulsed laser deposition (펄스 레이저 증착법으로 제작한 ZnO 박막의 발광 특성)

  • 배상혁;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.539-542
    • /
    • 2000
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of 355 nm. In order to investigate the emission properties of ZnO thin films, PL measurements with an Ar ion laser as a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited PL bands centered around 390, 510 and 640 nm, labeled near ultra-violet (UV), green and orange bands. Structural properties of ZnO thin films are analized with X-ray diffraction (XRD).

  • PDF

Structural Analysis of Carboxylic Acid-Functionalized Multi-walled Carbon Nanotubes

  • Oh, Weon-Tae;Kim, Jung-Soo;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.63-63
    • /
    • 2007
  • Carboxylated multi-walled carbon nanotubes (MWNTs) were in detail characterized by XRD, XPS, FTIR, and thermogravimetric measurements. Carboxylic acid groups were functionalized to MWNTs using aqueous acid solutions. The change. of sonication and reflux conditions rarely influenced the degree of carboxylation on MWNTs, but reduced the thermal stability of the resulting carboxylated MWNTs. The characteristic Bragg peaks of pristine and carboxylated MWNTs were analyzed by XRD measurements. After acid treatment the diffraction peaks (100), (101), and (102) of pristine MWNTs disappeared, but the diffraction peak (002) was preserved in the carboxylated MWNTs. The introduction of carboxylic acid groups on MWNTs caused to improve the dispersibility of the resulting carboxylated MWNTs in water.

  • PDF

RF Power dependence in $YMnO_3$/Si(100) Structures ($YMnO_3$/Si(100) 구조의 RF Power 의존성)

  • 김진규;정순원;김용성;이남열;정상현;김광호;유병곤;이원재;유인규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.755-758
    • /
    • 2000
  • YMnO$_3$films have been deposited with different Rf powers of 60W, 80W, 100W, and 120W. The structural properties of YMnO$_3$films on Si(100) were analysed by XRD(X-ray diffraction). The c-axis oriented peaks of YMnO$_3$were observed deposited in YMnO$_3$/Si(100) structure of RF power at 87$0^{\circ}C$ in oxygen ambient, and the peaks were enlarged by increasing The RF powers. The dielectric constant of the film deposited at 100W and 120W of RF power were about 19, 20 respectively.

  • PDF

7Li-NMR and Thermal Analysis for Lithium Inserted into Artificial Carbon Material

  • O, Won Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.367-371
    • /
    • 2001
  • Lithium inserted into artificial carbon has been synthesized as a function of the Li concentration. The characteristics of these prepared compounds were determined from the studies using X-ray diffraction(XRD), solid nuclear magnetic resonance (NM R) spectrophotometric and differential scanning calorimeter(DSC) analysis. X-ray diffraction showed that lower stage intercalation compounds were formed with increasing Li concentration. In the case of the AG3, most compounds formed were of the stage 1 structure. Pure stage 1 structural defects of artificial graphite were not observed. 7Li-NMR data showed that bands are shifted toward higher frequencies with increasing lithium concentration; this is because non-occupied electron shells of Li increased in charge carrier density. Line widths of the Li inserted carbon compounds decreased slowly because of nonhomogeneous local magnetic order and the random electron spin direction for located Li between graphene layers. The enthalpy and entropy changes of the compounds can be obtained from the differential scanning calorimetric analysis results. From these results, it was found that exothermic and endothermic reactions of lithium inserted into artificial carbon are related to the thermal stability of lithium between artificial carbon graphene layers.

Interfacial Natures and Controlling Morphology of Co Oxide Nanocrystal Structures by Adding Spectator Ni Ions

  • Gwag, Jin-Seog;Sohn, Young-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.505-510
    • /
    • 2012
  • Cobalt oxide nanostructure materials have been prepared by adding several concentrations of spectator Ni ions in solution, and analyzed by electron microscopy, X-day diffraction, calorimetry/thermogravimetric analysis, UV-vis absorption, Raman, and X-ray photoelectron spectroscopy. The electron microscopy results show that the morphology of the nanostructures is dramatically altered by changing the concentration of spectator ions. The bulk XRD patterns of $350^{\circ}C$-annealed samples indicate that the structure of the cobalt oxide is all of cubic Fd-3m $Co_3O_4$, and show that the major XRD peaks shift slightly with the concentration of Ni ions. In Raman spectroscopy, we can confirm the XRD data through a more obvious change in peak position, broadness, and intensity. For the un-sputtered samples in the XPS measurement process, the XPS peaks of Co 2p and O 1s for the samples prepared without Ni ions exhibit higher binding energies than those for the sample prepared with Ni ions. Upon $Ar^+$ ion sputtering, we found $Co_3O_4$ reduces to CoO, on the basis of XPS data. Our study could be further applied to controlling morphology and surface oxidation state.

Physical Characteristics of 3C-SiC Thin-films Grown on Si(100) Wafer (Si(100) 기판 위에 성장돈 3C-SiC 박막의 물리적 특성)

  • ;;Shigehiro Nishino
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.953-957
    • /
    • 2002
  • Single crystal 3C-SiC (cubic silicon carbide) thin-films were deposited on Si(100) wafer up to the thickness of 4.3 ${\mu}{\textrm}{m}$ by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane; {CH$_{3}$$_{6}$ Si$_{2}$) at 135$0^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC film was 4.3 ${\mu}{\textrm}{m}$/hr. The 3C-SiC epitaxial film grown on Si(100) wafer was characterized by XRD (X-ray diffraction), AFM (atomic force microscopy), RHEED (reflection high energy electron diffraction), XPS (X-ray photoelecron spectroscopy), and Raman scattering, respectively. Two distinct phonon modes of TO (transverse optical) near 796 $cm^{-1}$ / and LO (longitudinal optical) near 974$\pm$1 $cm^{-1}$ / of 3C-SiC were observed by Raman scattering measurement. The heteroepitaxially grown film was identified as the single crystal 3C-SiC phase by XRD spectra (2$\theta$=41.5。).).

Effects of Polycarboxylate Type Superplasticizer on the Hydration of Ordinary Portland Cement (보통포틀랜드시멘트의 수화 반응에 미치는 폴리카복실레이트계 고유동화제의 영향)

  • 류호석;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.417-424
    • /
    • 2004
  • Polycarboxylate type superplasticizers (PCA) with different graft chain (Polyethylene oxide) length were synthesized by Methoxypoly (ethyleneglycol)monomethacrylate (MPEGMAA) and methacrylic acid (MAA). The effects of PCA on the hydration of Ordinary Portland Cement (OPC) were investigated by Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) techniques. The effect of graft chain length of PCA on the hydration of OPC was different at early age, but, at long age, was similar. The ratio of relative peak intensity, (I[001]/I[101]), of Ca(OH)$_2$ compared with OPC also was reduced by PCA addition.

Characterization of 3C-SiC grown on Si(100) water (Si(100) 기판상에 성장된 3C-SiC의 특성)

  • Na, Kyung-Il;Chung, Yun-Sik;Ryu, Ji-Goo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.533-536
    • /
    • 2001
  • Single crystal cubic silicon carbide(3C-SiC) thin film were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD(atmospheric pressure chemical vapor deposition) method using hexamethyildisilane(HMDS) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical layers on Si(100) were characterized by XRD(X-ray diffraction), raman scattering and RHEED(reflection high-energy electron diffraction), respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The deposition films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$). Also, with increase of films thickness, RHEED patterns gradually changed from a spot pattern to a streak pattern.

  • PDF