• Title/Summary/Keyword: XRD & SEM분석

Search Result 1,399, Processing Time 0.033 seconds

Phase evaluation of Fe/Co pigments coated porcelain by rietveld refinement (리트벨트 정밀화법에 의한 Fe/Co 안료가 코팅된 도자기의 상분석)

  • Nam-Heun Kim;Kyung-Nam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.174-180
    • /
    • 2023
  • Porcelain (white ware, celadon ware) coated with a ferrous sulfate and ferrous/cobalt sulfate was sintered at 1250℃. The specimens were investigated by HR-XRD, FE-SEM, HR-EDS, and UV-vis spectrophotometer. Through X-ray rietveld quantitative analysis, quartz and mullite were found to be the main phases for white ware, and mullite and plagioclase were found to be the main phases for celadon ware. When the pigment of ferrous/cobalt sulfate was applied, were identified as an andradite phase for celadon ware and a spinel phase for the white ware, and the amorphous phase, respectively. The L* value, which was the brightness of the specimen, was 72.01, 60.92 for white ware and celadon ware, respectively. The ferrous and ferrous/cobalt pigment coated porcelain had L* values of 44.89, 52.27 for white ware and celadon ware, respectively; with a* values of 2.12, 1.40, an d at b* values of 1.45 and 13.79. As for the color of the specimens, it was found that the L* value was greatly affected by the white ware, and the b* value differed greatly depending on the clay. It was thought to be closely related to the production of the secondary phase such as Fe2O3 and andradite phase produced in the surface layer.

A Study on the Reaction of Al-1% Si with Ti-silicide (Al-1% Si층과 Ti-silicide층의 반응에 관한 연구)

  • Hwang, Yoo-Sang;Paek, Su-Hyon;Song, Young-Sik;Cho, Hyun-Choon;Choi, Jin-Seog;Jung, Jae-Kyoung;Kim, Young-Nam;Sim, Tae-Un;Lee, Jong-Gil;Lee, Sang-In
    • Korean Journal of Materials Research
    • /
    • v.2 no.6
    • /
    • pp.408-416
    • /
    • 1992
  • Stable TiS$i_2$was formed by RTA on single-Si and on poly-Si. Subsequently, an Al-1% Si layer with 600-nm thick was deposited on top of the TiS$i_2$, Finally, the specimens were annealed for 30min at 400-60$0^{\circ}C$in $N_2$ambient. The thermal stability of Al-1% Si/TiS$i_2$bilayer and interfacial reaction were investigated by measuring sheet resistance, Auger electron spectroscopy (AES), and scanning electron microscopy (SEM). The composition and phase of precipitates formed by the reaction of Al-1% Si with Ti-silicide were studied by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD). In the case of single-Si substrate the reaction of Al-1% Si layer with TiS$i_2$layer resulted in precipitates, consuming all TiS$i_2$layer at 55$0^{\circ}C$. On the other hand, the disappearance of TiS$i_2$on poly-Si occurred at 50$0^{\circ}C$ and more precipitates were formed by the reaction of Al-1% Si/TiS$i_2$on potty-Si substrate than those of the reaction on single-Si substrate. This phenomenon resulted from the fact that Ti-silicide formed on poly-Si was more unstable than on single-Si by the effect of grain boundary. By EDS analysis the precipitates were found tobe composed of Ti, Al, and Si. X-ray diffraction showed the phase of precipitates to be theT$i_7$A$l_5$S$i_12$ternary compound.

  • PDF

Mineralogical, Micro-textural, and Geochemical Characteristics for the Carbonate Rocks of the Lower Makgol Formation in Seokgaejae Section (석개재 지역 하부 막골층 탄산염암의 광물조성, 미세구조 및 지화학적 특성)

  • Park, Chaewon;Kim, Ha;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.323-343
    • /
    • 2018
  • This study defines the mineralogical, micro-textural and geochemical characteristics for the carbonate rocks and discusses the fluids that have affected the depositional environment of the Lower Makgol Formation in Seokgaejae section. Based on analysis of X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-ray Spectrometry (SEM-EDS), Electron Probe Micro Analyzer-Wavelength Dispersive X-ray Spectrometry (EPMA-WDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), carbonate miorofacies in the basal and the lower members of the Makgol Formation are distinguished and classified into four types. Type 1 dolomite (xenotopic interlocking texture) and Type 2 dolomite (idiotopic interlocking texture) have relatively high Mg/Ca ratio, flat REE pattern, low Fe and Mn. Extensively interlocking textures in these dolomites indicate constant supply of Mg ion from hypersaline brine. Type 3 and Type 4 dolomite (scattered and loosely-aggregated texture) have relatively moderate Mg/Ca ratio, MREE enriched pattern, low to high Fe and Mn. These partial dolomitization indicate limited supply of Mg ion under the influx of meteoric water with seawater. Also, the evidence of Fe-bearing minerals, recrystallization and relatively high Fe and Mn in Type 4 indicates the influence of secondary diagenetic fluids under suboxic conditions. Integrating geochemical data with mineralogical and micro-textural evidence, the discrepancy between the basal and the lower members of the Makgol Formation indicates different sedimentary environment. It suggest that hypersaline brine have an influence on the basal member, while mixing meteoric water with seawater have an effect on the lower member of the Makgol Formation.

Importance of Microtextural and Geochemical Characterizations of Soils on Landslide Sites (산사태지역 토층의 미세조직과 지화학적 특성의 중요성)

  • Kim Kyeong-Su;Choo Chang-Oh;Booh Seong-An;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.447-462
    • /
    • 2005
  • The purposes of this study are to evaluate and discuss the importance of geochemical properties of soil materials that play an important role in the occurrence of the landslide, using analyses of microtexture, particle size distribution, XRC, and FE-SEM equipped with energy dispersive spectrum on soils collected from landslide slopes of gneiss, granite and sedimentary rock areas. Soils from gneiss and granite areas where landslides took place have much clay content relative to those from non landslide areas, particularly pronounced in the granite area. Therefore the clay content is considered a sensitive factor on landslide. Clay minerals contained in soils are illite, chlorite, kaolinite and montmorillonite. Especially the content of clay minerals in soils from the Tertiary sedimentary rocks is highest, with abundant montmorillonite as expandable species. It is believed that this area was much vulnerable to landslide comparable to other areas because of its high content of monoorillonite, even though there might be weak precipitation. Since no conspicuous differentiation in mineralogy between the landslide area and non landslide area can be made, the occurrence of landslide may be influenced not by mineralogy, but by local geography and mechanical properties of soils. Geochemical information on weathering properties, mineralogy, and microtexture of soils is helpful to better understand the causes and patterns of landslide, together with engineering geological analyses.

Synthesis of Cerium Doped Yttrium Aluminum Garnet Hollow Phosphor Based on Kirkendall Effect

  • Kim, Min-Jeong;Suphasis, Roy;Gong, Dal-Seong;Jeong, Hyeon-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.185-185
    • /
    • 2012
  • 중공 발광 나노 물질은 특유의 구조적 특성(낮은 밀도, 높은 비표면적, 다공성 물질, 낮은 열팽창계수 등)과 광학적 성질을 이용하여 디스플레이 패널, 광결정, 약물전달체, 바이오 이미징 라벨 등의 다양한 적용이 가능하다. 이러한 적용에 있어 균일한 크기와 형태의 중공 입자는 필수 조건으로 여겨진다. 지금까지 합성된 중공 발광 입자에는 BaMgAl10O17 : Eu2+-Nd3+, Gd2O3 : Eu3+, $EuPO_4{\cdot}H_2O$과 같은 것들이 있으나 크기 조절이 어렵고, 그 균일성이 확보되지 못하였다. 균일한 크기의 중공 발광 입자를 만들기 위해 SiO2나 emulsion을 템플릿으로 이용하여 황화카드뮴, 카드뮴 셀레나이드 중공 입자를 합성한 예가 있으나, 양자점의 독성으로 인하여 바이오분야 응용에는 적합하지 않다. YAG는 모체로써 형광체에서 가장 많이 이용되는 물질로, 화학적 안정성과 낮은 독성, 높은 양자 효율 등 많은 장점을 갖고 있다. 특히 세륨이 도핑된 YAG형광체의 경우 WLED, 신틸레이터, 바이오산업에 적용이 가능하다. 그러나 지금까지 중공 YAG:Ce3+형광체를 합성한 예가 없었다. 본 연구에서는 단분산 수화 알루미늄 (Al(OH)3) 입자 위에 세륨이 도핑 된 이트륨 베이직 카보네이트 ($Y(OH)CO_3$)를 균일하게 코팅한 후 열처리를 하여 균일한 크기의 Y3Al5O12:Ce3+(YAG) 중공 입자를 합성하였다. 열처리 온도에 따른 고분해능 투과 전자 현미경(HRTEM), X-선 회절(XRD), 고분해능 에너지 분광법(HREDX) 분석결과, 중공 YAG: Ce3+입자는 Kirkendall 효과에 의해 형성됨을 확인하였다. 전계방사형 주사 전자 현미경(FE-SEM) 측정을 통해, 열처리 후에도 입자의 크기와 형태가 균일함을 확인하였으며, 공초점 현미경 관찰을 통해 중공 형태를 명확히 확인 할 수 있었다. Photoluminescence (PL) 분광법과 형광 수명 이미징 현미경(FLIM)을 이용한 광 특성 분석결과, 합성된 입자는 400-500 nm에서 흡수 파장 (456 nm에서 최대 강도)과 500-700 nm 범위의 발광 파장(544 nm에서 최대 강도)을 나타냈고, 상용 YAG: Ce3+(70 ns)에 준하는 74 ns의 잔광 시간(decay time)이 측정되었다. 단분산 수화 알루미늄 입자의 크기를 조절하여 최종 합성된 YAG: Ce3+의 크기를 조절할 수 있었다. 지름 약 600 nm의 Al(OH)3를 사용한 경우, $1,300^{\circ}C$에서 열처리를 한 후 평균 지름 590 nm의 중공입자를 합성하였고, 약 170 nm의 Al(OH)3를 이용하여, 더 낮은 온도인 $1,100^{\circ}C$에서의 열처리를 통해 평균지름 140 nm의 중공 YAG: Ce3+입자를 합성하였다. 본 연구를 통하여 합성된 균일한 크기의 YAG 중공입자는 LED와 같은 광전변환 소자 및 다기능성 바이오 이미징 등의 나노바이오 소자 분야에 활용될 수 있음이 기대된다.

  • PDF

Wear Behaviors of WC-CoCr and WC-CrC-Ni Coatings Sprayed by HVOF (고속화염 용사법으로 제조된 WC-CoCr 코팅과 WC-CrC-Ni 코팅의 내마모 거동)

  • Lee, Seoung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.204-211
    • /
    • 2020
  • The high-velocity oxy-fuel (HVOF) thermal spraying coating technique has been considered a promising replacement for traditional electrolytic hard chrome plating (EHC), which caused environmental pollution and lung cancer due to toxic Cr6+. In this paper, two types of cermet coatings were prepared by HVOF spraying: WC-CoCr and WC-CrC-Ni coatings. The produced coatings were analyzed extensively in terms of the micro-hardness, porosity, crystalline phase and microstructure using a hardness tester, optical microscopy, X-ray diffraction, and scanning electron microscopy (including energy dispersed spectroscopy (EDS)), respectively. The wear and friction behaviors of the coatings were evaluated comparatively by reciprocating sliding wear tests at 25 ℃, 250 ℃, and 450 ℃. The results revealed correlations among the microstructures, metallic binder matrixes, porosities, and wear performance of the coatings. For example, WC-CoCr coatings showed better sliding wear resistance than WC-CrC-Ni coatings, regardless of the test temperature due to the more homogeneous microstructure, Co-rich, Cr-rich metallic binder matrix, and lower porosity.

Effects of Aging on Properties of MgO-Partially Stabilized Zirconia (마그네시아 부분안정화 지르코니아 소결체의 특성에 미치는 열처리 효과)

  • 정형진;오영제;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.243-250
    • /
    • 1987
  • The effects aging on some properties and thermal-shock behavior of zirconia partially stabilized with 9 mol% MgO (9MZ) were studied. 9MZ specimens were aged over $1200^{\circ}$-$1400^{\circ}C$ for 12hours subsequently, after sintering at $1650^{\circ}C$ for 4 hours. Fracture strength(both before and after thermal-shock test), linear thermal expansion, monoclinic fraction and phase transition by XRD, density, galvanic potential and microstructure were measured. Quantitative chemical analysis around the grain-boundary of the specimen aged at $1350^{\circ}C$ was also conducted by EDX. The aging of 9MZ specimen causes a thermal decomposition of cubic-$ZrO^{2}$ into the formation metastable tetragonal-$ZrO^{2}$ and MgO. The former increases the residual strength after thermal-shock test and the latter improves the thermal-shock resistance due to thermal conduction through the continuous magnesia phase and the formation of monoclinic phase content in matrix were increased with decreasing the aging temperature from $1400^{\circ}C$ to $1200^{\circ}C$. Galvanic potential of the aged specimen exhibited a proper emf characteristic.

  • PDF

Study on Precipitation of the Minerals in the Soil of Imha Reservoir Watershed (임하호 유역 토양의 광물학적 침전성 연구)

  • Kim, Yeonjeong;You, Samhwan;Jeong, Hyungjin;Baek, Seungcheol;Lee, Sungmin;Seo, Eulwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.13-18
    • /
    • 2010
  • The present study was undertaken to investigate the characteristic of suspended matter in soils of Imha-Dam area by turbidity. Soil sampling was conducted at 5 points of Yeongyang (Turbid area) and 2 points of Cheongsong (Clean area). Experimental analysis was conducted using those samples. The pH of water in the soils at turbid area was higher than that of clean area. X-ray diffraction analysis showed that every sample consists in mainly quartz, illite and feldspar before precipitation. After precipitation for 3 days, the content of quartz and feldspar was decreased and the content of illite was increased at turbid area. The soil of Sinheung (St. 6) at clean area was analyzed only illite. SEM-EDS analysis showed the much content of $SiO_2$ as to every sample before precipitation, but $K_2O$, MgO, $Al_2O_3$, CaO and $Fe2O_3$ with illite was increased after precipitation for 3 days as to every sample. Experimental results exhibited that the major mineral of turbid water was illite at turbid area and clean area.

A Study on Geology and Clay Minerals of the Landslide Area in the Munhyun-dong, Nam-gu, Pusan (부산시 남구 문현동 산사태 지역의 지질 및 점토광물에 대한 연구)

  • 황진연;김선경;김춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.113-125
    • /
    • 1999
  • In this study the occurrence and mineralogical characteristics of clay minerals from the Munhyun-dong landslide area in Pusan city were examined by XRD, SEM, and chemical analyses. Several types of clay minerals such as halloysite, vermiculite, mica/vermiculite interstratified mineral, vermiculite/smectite interstratified mineral, kaolinite and illite are found abundantly in the area. The occurrence of clay minerals suggest that they have been formed by weathering of andesite which is the bedrock of the area. It is believed that halloysite was formed in the early stage of weathering, and vermiculite, mica/vermiculite interstratified mineral and mica/vermiculite interstratified mineral were formed in the middle stage, and finally, kaolinite was formed. The clay minerals occurring in the central part of the landsliding area and within the slip surface are dominated by expandable minerals such as halloysite, vermiculite and vermiculite/smectite interstratified mineral. These clay minerals expand by absorbing water and effectively decrease the shear resistance of the rock mass, and therefore, they could be an important factor for the landslide. The analyses of geology and mineralogical characteristics of the area suggest that the landslide was caused by combination of various factors including steep slope, heavy rainfall, abundant joints, alteration of the rocks, and occurrence of expandable clay minerals. The result of this study suggests that the investigation for the prevention of possible landslide must include the examination of clay mineralogy as well as the site geology.

  • PDF

Synthesis and Electrochemical Properties of Li[Fe0.9Mn0.1]PO4 Nanofibers as Cathode Material for Lithium Ion Battery by Electrospinning Method (전기방사를 이용한 리튬 이차전지용 양극활물질 Li[Fe0.9Mn0.1]PO4 나노 섬유의 합성 및 전기화학적 특성)

  • Kim, Cheong;Kang, Chung-Soo;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2012
  • $LiFePO_4$ is an attractive cathode material due to its low cost, good cyclability and safety. But it has low ionic conductivity and working voltage impose a limitation on its application for commercial products. In order to solve these problems, the iron($Fe^{2+}$)site in $LiFePO_4$ can be substituted with other transition metal ions such as $Mn^{2+}$ in pursuance of increase the working voltage. Also, reducing the size of electrode materials to nanometer scale can improve the power density because of a larger electrode-electrolyte contact area and shorter diffusion lengths for Li ions in crystals. Therefore, we chose electrospinning as a general method to prepare $Li[Fe_{0.9}Mn_{0.1}]PO_4$ to increase the surface area. Also, there have been very a few reports on the synthesis of cathode materials by electrospinning method for Lithium ion batteries. The morphology and nanostructure of the obtained $Li[Fe_{0.9}Mn_{0.1}]PO_4$ nanofibers were characterized using scanning electron microscopy(SEM). X-ray diffraction(XRD) measurements were also carried out in order to determine the structure of $Li[Fe_{0.9}Mn_{0.1}]PO_4$ nanofibers. Electrochemical properties of $Li[Fe_{0.9}Mn_{0.1}]PO_4$ were investigated with charge/discharge measurements, electrochemical impedance spectroscopy measurements(EIS).