• Title/Summary/Keyword: XRCC1 polymorphisms

Search Result 59, Processing Time 0.022 seconds

XRCC1 and ADPRT Polymorphisms Associated with Survival in Breast Cancer Cases Treated with Chemotherapy

  • Ye, Sheng;Rong, Jian;Huang, Shao-Hong;Zheng, Zhou-San;Yun, Miao;Wang, Shen-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4923-4926
    • /
    • 2012
  • Aim: To investigate whether XRCC1 and ADPRT polymorphisms might be associated with outcomes of breast cancer. Methods: A prospective study was conducted with a total of 335 breast cancer patients undergoing chemotherapy consecutively collected from Jan. 2005 to Jan. 2008. Genotyping of XRCC1 and ADPRT polymorphisms was conducted by PCR-RFLP assay. Results: All 335 patients were followed up until death or the end of Jan. 2012, with a median follow-up period of 38.8 (2-64) months. It was shown that the variant genotype of XRCC1 399Gln/Gln was strongly significantly associated with a decreased risk of death from breast cancer, with an HR (95% CI) of 0.52 (0.28-0.91). Similarly, individuals carrying the ADPRT 762Ala/Ala demonstrated longer survival compared to ADPRT 762 Val/Val, with an HR (95% CI) of 0.58 (0.31-0.97). Individuals with combination genotypes of XRCC1 399Gln allele and ADPRT 762Ala/Ala presented with a longer survival, the HR (95% CI) being 0.56 (0.32-0.97). Conclusion: We found a significant association between XRCC1399Gln/Gln and ADPRT 762Ala/Ala polymorphisms and clinical outcomes. These two genotypes could be used as a surrogate markers of clinical outcome in glioma cases receiving chemotherapy.

Association Between XRCC5, 6 and 7 Gene Polymorphisms and the Risk of Breast Cancer: A HuGE Review and Meta-analysis

  • Zhou, Li-Ping;Luan, Hong;Dong, Xi-Hua;Jin, Guo-Jiang;Man, Dong-Liang;Shang, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3637-3643
    • /
    • 2012
  • Objective: Non-homologous end joining (NHEJ) is a pathway for repairing DNA double-strand breaks. Recent publications indicated that XRCC5, XRCC6 and XRCC7 genes may participate in the pathogenesis of breast cancer. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis was to investigate associations between XRCC5, XRCC6 and XRCC7 genetic polymorphisms in the NHEJ pathway and breast cancer risk. Methods: Studies focusing on the relationship between genetic polymorphisms in XRCC5, XRCC6 and XRCC7 genes and susceptibility to breast cancer were selected from the Pubmed, Cochrane library, Embase, Web of Science, Springerlink, CNKI and CBM databases. Data were extracted by two independent reviewers. The meta-analysis was performed with Review Manager Version 5.1.6 and STATA Version 12.0 software. The odds ratio (OR) with 95% confidence interval (95%CI) was calculated based on the extracted data. Results: According to the inclusion criteria, we final included seven studies with a total of 2,864 breast cancer cases and 3,060 healthy controls. Meta-analysis results showed that rs3835 (G>A) and rs828907 (G>T) in XRCC5 gene, and rs132793 (G>A) in XRCC6 gene might increase the risk of breast cancer, while rs132788 G>T and rs6002421 (A>G) might be protective factors. However, there was no relationship between XRCC7 genetic polymorphisms and the risk of breast cancer. Conclusion: This meta-analysis suggests that the rs3835 G>A and rs828907 G>T in XRCC5 gene, rs6002421 (A>G), rs132788 (G>T) and rs132793 (G>A) in XRCC6 gene might be risk factors for breast cancer, while the rs132788 (G>T) and rs6002421 (A>G) in XRCC6 gene might be protective.

Polymorphisms in DNA Repair Genes and Risk of Glioma and Meningioma

  • Luo, Ke-Qin;Mu, Shi-Qing;Wu, Zhong-Xue;Shi, Yi-Ni;Peng, Ji-Cai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.449-452
    • /
    • 2013
  • Polymorphisms in DNA repair genes have been shown to influence DNA repair processes and to modify cancer susceptibility. Here we conducted a case-control study to assess the role of potential SNPs of DNA repair genes on the risk of glioma and meningioma. We included 297 cases and 458 cancer-free controls. Genotyping of XRCC1 Gln399Arg, XRCC1 Arg194Trp, XRCC2 Arg188His, XRCC3 Thr241Met, XRCC4 Ala247Ser, ERCC1 Asn118Asp, ERCC2 Lys751Gln and ERCC5 Asp1558His were performed in a 384-well plate format on the Sequenom MassARRAY platform. XRCC1 Arg194Trp (rs1799782) and ERCC2 Asp312Asn rs1799793 did not follow the HWE in control group, and genotype distributions of XRCC1 Gln399Arg rs25487, XRCC2 Arg188His rs3218536 and ERCC2 Asp312Asn rs1799793 were significantly different between cases and controls (P<0.05). We found XRCC1 399G/G, XRCC1 194 T/T and XRCC3 241T/T were associated with a higher risk when compared with the wild-type genotype. For ERCC5 Asp1558His, we found G/G genotype was associated with elevated susceptibility. In conclusion, our study has shown that XRCC1 Gln399Arg, XRCC1 Arg194Trp, XRCC3 Thr241Met and ERCC5 Asp1558His are associated with risk of gliomas and meningiomas. This finding could be useful in identifying the susceptibility genes for these cancers.

DNA Repair Gene Polymorphisms at XRCC1, XRCC3, XPD, and OGG1 Loci in the Hyderabad Population of India

  • Parine, Narasimha Reddy;Pathan, Akbar Ali Khan;Bobbarala, Varaprasad;Abduljaleel, Zainularifeen;Khan, Wajahatullah;Alanazi, Mohammed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6469-6474
    • /
    • 2012
  • Background: DNA repair is one of the crucial defense mechanism against mutagenic exposure. Inherited SNPs of DNA repair genes may contribute to variation in DNA repair capacity and susceptibility to cancer. Due to the presence of these variants, inter-individual and ethnic differences in DNA repair capacity have been established in various populations. India harbors enormous genetic and cultural diversity. Materials and Methods: In the present study we aimed to determine the genotypes and allele frequencies of XRCC1 Arg399Gln (rs25487), XRCC3 Thr241Met (rs861539), XPD Lys751Gln (rs13181), and OGG1 Ser326Cys (rs1052133) gene polymorphisms in 186 healthy individuals residing in the Hyderabad region of India and to compare them with HapMap and other populations. Results and Conclusions: The genotype and allele frequency distribution at the four DNA repair gene loci among Hyderabad population of India revealed a characteristic pattern. Comparison of these gene polymorphisms with other populations revealed a distinctiveness of Hyderabad population from the Deccan region of India. To the best of our knowledge, this is the first report of such DNA repair gene polymorphisms in the Deccan Indian population.

Polymorphisms in XRCC1 Gene, Alcohol drinking, and Risk of Colorectal Cancer: a Case-control Study in Jiangsu Province of China

  • Gao, Chang-Ming;Ding, Jian-Hua;Li, Su-Ping;Liu, Yan-Ting;Cao, Hai-Xia;Wu, Jian-Zhong;Tang, Jin-Hai;Tajima, Kazuo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6613-6618
    • /
    • 2013
  • To evaluate the relationship between alcohol drinking, XRCC1 codon 194 and 399 polymorphisms and risk of colorectal cancer, we conducted a case-control study with 315 colorectal cancer cases (105 colon, 210 rectal) and 439 population-based controls in Jiangsu Province of China. The XRCC1 codon 194 and 399 genotypes were identified using polymerase chain reaction and restrictrion fragment length polymorphism methods (PCR-RFLP). A structured questionnaire was used to elicit detailed information. Odds ratios (ORs) were estimated with an unconditional logistic model. In this study no significant differences were observed among the studied groups with regard to the genotype distribution of the XRCC1 codons 194 and 399 and the risk of colorectal cancer did not appear to be significantly influenced by genotype alone, whereas alcohol consumption showed a positive association (P for trend <0.01). When combined effects of XRCC1 polymorphisms and alcohol consumption were analyzed, we found that the 194Trp or 399Gln alleles further increased the colorectal cancer risk due to high alcohol intake. These findings support the conclusion that colorectal cancer susceptibility may be altered by gene-environment interactions.

Association Between Single Nucleotide Polymorphisms in the XRCC1 Gene and Susceptibility to Prostate Cancer in Chinese Men

  • Zhou, Yun-Feng;Zhang, Guang-Bo;Qu, Ping;Zhou, Jian;Pan, Hui-Xin;Hou, Jian-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5241-5243
    • /
    • 2012
  • Background: Prostate cancer (Pca) is one of the most common complex and polygenic diseases in men. The X-ray repair complementing group 1 gene (XRCC1) is an important candidate in the pathogenesis of Pca. The purpose of this study was to evaluate the association between single nucleotide polymorphisms in the XRCC1 gene and susceptibility to Pca. Materials and Methods: XRCC1 gene polymorphisms and associations with susceptibility to Pca were investigated in 193 prostate patients and 188 cancer-free Chinese men. Results: The c.910A>G variant in the exon9 of XRCC1 gene could be detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing methods. Significantly increased susceptibility to prostate cancer was noted in the homozygote comparison (GG versus AA: OR=2.95, 95% CI 1.46-5.42, ${\chi}^2$=12.36, P=0.001), heterozygote comparison (AG versus AA: OR=1.76, 95% CI 1.12-2.51, ${\chi}^2$=4.04, P=0.045), dominant model (GG/AG versus AA: OR=1.93, 95% CI 1.19-2.97, ${\chi}^2$=9.12, P=0.003), recessive model (GG versus AG+AA: OR=2.17, 95% CI 1.33-4.06, ${\chi}^2$=8.86, P=0.003) and with allele contrast (G versus A: OR=1.89, 95% CI 1.56-2.42, ${\chi}^2$=14.67, P<0.000). Conclusions: These findings suggest that the c.910A>G polymorphism of the XRCC1 gene is associated with susceptibility to Pca in Chinese men, the G-allele conferring higher risk.

Association of DNA Base-excision Repair XRCC1, OGG1 and APE1 Gene Polymorphisms with Nasopharyngeal Carcinoma Susceptibility in a Chinese Population

  • Li, Qing;Wang, Jian-Min;Peng, Yu;Zhang, Shi-Heng;Ren, Tao;Luo, Hao;Cheng, Yi;Wang, Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5145-5151
    • /
    • 2013
  • Background: Numerous carcinogens and reactive oxygen species (ROS) may cause DNA damage including oxidative base lesions that lead to risk of nasopharyngeal carcinoma. Genetic susceptibility has been reported to play a key role in the development of this disease. The base excision repair (BER) pathway can effectively remove oxidative lesions, maintaining genomic stability and normal expression, with X-ray repair crosscomplementing1 (XRCC1), 8-oxoguanine glycosylase-1 (OGG1) and apurinic/apyimidinic endonuclease 1 (APE1) playing important roles. Aims: To analyze polymorphisms of DNA BER genes (OOG1, XRCC1 and APE1) and explore their associations, and the combined effects of these variants, with risk of nasopharyngeal carcinoma. Materials and Methods: We detected SNPs of XRCC1 (Arg399Gln), OGG1 (Ser326Cys), APE1 (Asp148Glu and -141T/G) using the polymerase chain reaction (PCR) with peripheral blood samples from 231 patients with NPC and 300 healthy people, furtherly analyzing their relations with the risk of NPC in multivariate logistic regression models. Results: After adjustment for sex and age, individuals with the XRCC1 399Gln/Gln (OR=1.96; 95%CI:1.02-3.78; p=0.04) and Arg/Gln (OR=1.87; 95%CI:1.29-2.71; p=0.001) genotype variants demonstrated a significantly increased risk of nasopharyngeal carcinoma compared with those having the wild-type Arg/Arg genotype. APE1-141G/G was associated with a significantly reduced risk of NPC (OR=0.40;95%CI:0.18-0.89) in the smoking group. The OR calculated for the combination of XRCC1 399Gln and APE1 148Gln, two homozygous variants, was significantly additive for all cases (OR=2.09; 95% CI: 1.27-3.47; p=0.004). Conclusion: This is the first study to focus on the association between DNA base-excision repair genes (XRCC1, OGG1 and APE1) polymorphism and NPC risk. The XRCC1 Arg399Gln variant genotype is associated with an increased risk of NPC. APE1-141G/G may decrease risk of NPC in current smokers. The combined effects of polymorphisms within BER genes of XRCC1 399Gln and APE1 148Gln may contribute to a high risk of nasopharyngeal carcinoma.

Prediction Value of XRCC 1 Gene Polymorphism on the Survival of Ovarian Cancer Treated by Adjuvant Chemotherapy

  • Miao, Jin;Zhang, Xian;Tang, Qiong-Lan;Wang, Xiao-Yu;Kai, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5007-5010
    • /
    • 2012
  • Objective: We conducted a prospective study to test the association between three amino acid substitution polymorphismic variants of DNA repair genes, XRCC1 (Arg194Trp), XRCC1(Arg280His) and XRCC1 (Arg399Gln), and clinical outcome of ovarian cancer patients undergoing adjuvant chemotherapy. Methods: 195 patients with primary advanced ovarian cancer and treated by adjuvant chemotherapy were included in our study. All were followed-up from Jan. 2007 to Jan. 2012. Genotyping of XRCC1 polymorphisms was conducted by TaqMan Gene Expression assays. Results: The XRCC1 194 Trp/Trp genotype conferred a significant risk of death from ovarian cancer when compared with Arg/Arg (HR=1.56, 95%CI=1.04-3.15). Similarly, those carrying the XRCC1 399 Gln/Gln genotype had a increased risk of death as compared to the XRCC1 399Arg/Arg genotype with an HR (95% CI) of 1.98 (1.09-3.93). Conclusion: This study is the first to provide evidence that XRCC1 gene polymorphisms would well be useful as surrogate markers of clinical outcome in ovarian cancer cases undergoing adjuvant chemotherapy.

Single Nucleotide Polymorphisms of DNA Base-excision Repair Genes (APE1, OGG1 and XRCC1) Associated with Breast Cancer Risk in a Chinese Population

  • Luo, Hao;Li, Zheng;Qing, Yi;Zhang, Shi-Heng;Peng, Yu;Li, Qing;Wang, Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1133-1140
    • /
    • 2014
  • Altered DNA repair capacity can result in increased susceptibility to cancer. The base excision repair (BER) pathway effectively removes DNA damage caused by ionizing radiation and reactive oxidative species (ROS). In the current study, we analyzed the possible relation of polymorphisms in BER genes, including 8-oxoguanine DNA glycosylase (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), and X-ray repair cross-complementing group 1 protein (XRCC1), with breast cancer risk in Chinese Han women. This case-control study examined 194 patients with breast cancer and 245 cancer-free hospitalized control subjects. Single nucleotide polymorphisms (SNPs) of OGG1 (Ser326Cys), XRCC1 (Arg399Gln), and APE1 (Asp148Glu and -141T/G) were genotyped and analyzed for their association with breast cancer risk using multivariate logistic regression models. We found that XRCC1 Arg399Gln was significantly associated with an increased risk of breast cancer. Similarly, the XRCC1 Gln allele was significantly associated with an elevated risk in postmenopausal women and women with a high BMI (${\geq}24kg/m^2$). The OGG1 Cys allele provided a significant protective effect against developing cancer in women with a low BMI (< $24kg/m^2$). When analyzing the combined effects of these alleles on the risk of breast cancer, we found that individuals with ${\geq}2$ adverse genotypes (XRCC1 399Gln, APE1 148Asp, and OGG1 326Ser) were at a 2.18-fold increased risk of breast cancer (P = 0.027). In conclusion, our data indicate that Chinese women with the 399Gln allele of XRCC1 have an increased risk of breast cancer, and the combined effects of polymorphisms of BER genes may contribute to tumorigenesis.

XRCC1 Polymorphisms are Associated with Cervical Cancer Risk and Response to Chemotherapy: a Systematic Review and Meta-analysis

  • Shuai, Han-Lin;Luo, Xin;Yan, Rui-Ling;Li, Jian;Chen, Dan-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6423-6427
    • /
    • 2012
  • Background: Functional single nucleotide polymorphisms of x-ray repair cross-complementing protein 1 (XRCC1) have been suspected to contribute to uterine cervical cancer risk for a long time; however, most previous case-control studies were small sized and biased. Additionally, recent studies suggested that XRCC1 polymorphisms could be a biomarker of response to platinum-based chemotherapy. Methods: A comprehensive search was conducted to retrieve eligible studies and odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated to measure association strength. Results: A total of 13 studies were identified and analyzed. We found that the Arg194Trp polymorphism (Trp vs. Arg, OR=1.342, 95% CI: 1.176) was associated with increased risk of cervical cancer, while no significant association was found with Arg280His (His vs. Arg, OR=1.059, 95% CI: 0.863, 1.299) or Arg399Gln (Gln vs. Arg, OR=1.144, 95% CI: 0.938, 1.394). As for response to platinum-based chemotherapy, the variant XRCC1 399Gln allele (Gln vs. Arg, OR=0.345, 95% CI: 0.163, 0.729) was linked with a poor response; however, the Arg194Trp polymorphism (TrpArg vs. ArgArg, OR=6.421, 95% CI: 1.573, 26.205) predicted a good response. Conclusion: The Arg194Trp polymorphism of XRCC1 increases risk of cervical cancer; the variant 399Gln allele predicts poor response to platinum-based chemotherapy, while the Arg194Trp polymorphism indicates a good response.