Browse > Article
http://dx.doi.org/10.7314/APJCP.2013.14.1.449

Polymorphisms in DNA Repair Genes and Risk of Glioma and Meningioma  

Luo, Ke-Qin (Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University)
Mu, Shi-Qing (Beijing Tiantan Hospital, Capital Medical University)
Wu, Zhong-Xue (Beijing Tiantan Hospital, Capital Medical University)
Shi, Yi-Ni (Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University)
Peng, Ji-Cai (Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.14, no.1, 2013 , pp. 449-452 More about this Journal
Abstract
Polymorphisms in DNA repair genes have been shown to influence DNA repair processes and to modify cancer susceptibility. Here we conducted a case-control study to assess the role of potential SNPs of DNA repair genes on the risk of glioma and meningioma. We included 297 cases and 458 cancer-free controls. Genotyping of XRCC1 Gln399Arg, XRCC1 Arg194Trp, XRCC2 Arg188His, XRCC3 Thr241Met, XRCC4 Ala247Ser, ERCC1 Asn118Asp, ERCC2 Lys751Gln and ERCC5 Asp1558His were performed in a 384-well plate format on the Sequenom MassARRAY platform. XRCC1 Arg194Trp (rs1799782) and ERCC2 Asp312Asn rs1799793 did not follow the HWE in control group, and genotype distributions of XRCC1 Gln399Arg rs25487, XRCC2 Arg188His rs3218536 and ERCC2 Asp312Asn rs1799793 were significantly different between cases and controls (P<0.05). We found XRCC1 399G/G, XRCC1 194 T/T and XRCC3 241T/T were associated with a higher risk when compared with the wild-type genotype. For ERCC5 Asp1558His, we found G/G genotype was associated with elevated susceptibility. In conclusion, our study has shown that XRCC1 Gln399Arg, XRCC1 Arg194Trp, XRCC3 Thr241Met and ERCC5 Asp1558His are associated with risk of gliomas and meningiomas. This finding could be useful in identifying the susceptibility genes for these cancers.
Keywords
DNA repair gene; glioma; meningiomas; polymorphism;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mandal RK, Singh V, Kapoor R, Mittal RD (2011). Do polymorphisms in XRCC4 influence prostate cancer susceptibility in North Indian population? Biomarkers, 16, 236-42.   DOI   ScienceOn
2 Mittal RD, Gangwar R, Mandal RK, et al (2012). Gene variants of XRCC4 and XRCC3 and their association with risk for urothelial bladder cancer. Mol Biol Rep, 39, 1667-75.   DOI
3 Sadetzki S, Chetrit A, Freedman L, et al (2005). Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat Res, 164, 424-32.
4 Shete S, Hosking FJ, Robertson LB, et al (2009). Genome-wide association study identifies five susceptibility loci for glioma. Nature Genetics, 41, 899-904.   DOI   ScienceOn
5 Sterpone S, Cozzi R (2010). Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair. J Nucleic Acids, 2010, 780369.
6 Parkin DM, Bray F, Ferlay J, Pisani P (2005). Global cancer statistics, 2002. CA Cancer J Clin, 55, 74-108.   DOI   ScienceOn
7 Vogelstein B, Kinzler KW (2004). Cancer genes and the pathways they control. Nat Med, 10, 789-99.   DOI   ScienceOn
8 Wrensch M, Jenkins RB, Chang JS, et al (2009). Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nature Genetics, 41, 905-8.   DOI   ScienceOn
9 Yosunkaya E, Kucukyuruk B, Onaran I, et al (2010). Glioma risk associates with polymorphisms of DNA repair genes, XRCC1 and PARP1. Br J Neurosurg, 24, 561-5.   DOI   ScienceOn
10 Yuan T, Wei J, Luo J, et al (2012). Polymorphisms of base-excision repair genes hOGG1 326cys and XRCC1 280His increase hepatocellular carcinoma risk. Dig Dis Sci, 57, 2451-7.   DOI   ScienceOn
11 Zipprich J, Terry MB, Brandt-Rauf P, et al (2010). XRCC1 polymorphisms and breast cancer risk from the New York Site of the Breast Cancer Family Registry: A family-based case-control study. J Carcinog, 9, 4.   DOI   ScienceOn
12 Zhou K, Liu Y, Zhang H, et al (2009). XRCC3 haplotypes and risk of gliomas in a Chinese population: a hospital-based case-control study. Int J Cancer, 124, 2948-53.   DOI   ScienceOn
13 Zhou LP, Luan H, Dong XH, et al (2012). Association of functional polymorphisms of the XRCC4 gene with the risk of breast cancer: a meta-analysis. Asian Pac J Cancer Prev, 13, 3431-6.   DOI   ScienceOn
14 Zhou LQ, Ma Z, Shi XF, et al (2011). Polymorphisms of DNA repair gene XRCC1 and risk of glioma: a case-control study in Southern China. Asian Pac J Cancer Prev, 12, 2547-50.
15 Bethke L, Murray A, Webb E, et al (2008). Comprehensive analysis of DNA repair gene variants and risk of meningioma. J Natl Cancer Inst, 100, 270-6.   DOI   ScienceOn
16 Bondy ML, Scheurer ME, Malmer B, et al (2008). Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer, 113, 1953-68.   DOI   ScienceOn
17 Cheng CX, Xue M, Li K, Li WS (2012). Predictive value of XRCC1 and XRCC3 gene polymorphisms for risk of ovarian cancer death after chemotherapy. Asian Pac J Cancer Prev, 13, 2541-5.   DOI   ScienceOn
18 Chiu CF, Tsai MH, Tseng HC, et al (2008). A novel single nucleotide polymorphism in XRCC4 gene is associated with oral cancer susceptibility in Taiwanese patients. Oral Oncol, 44, 898-902.   DOI   ScienceOn
19 Custodio AC, Almeida LO, Pinto GR, et al (2012). Variation in DNA repair gene XRCC3 affects susceptibility to astrocytomas and glioblastomas. Genet Mol Res, 11, 332-9.   DOI
20 Davis F, Il'yasova D, Rankin K, et al (2011). Medical diagnostic radiation exposures and risk of gliomas. Radiat Res, 175, 790-6.   DOI   ScienceOn
21 Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2 (2006). Washington DC: National Research Council, National Academies of Science
22 Kiuru A, Lindholm C, Heinavaara S, et al (2008). XRCC1 and XRCC3 variants and risk of glioma and meningioma. J Neurooncol, 88, 135-42.   DOI   ScienceOn
23 Kumar A, Pant MC, Singh HS, Khandelwal S (2012). Reduced expression of DNA repair genes (XRCC1, XPD, and OGG1) in squamous cell carcinoma of head and neck in North India. Tumour Biol, 33, 111-9.   DOI
24 Liu HB, Peng YP, Dou CW, et al (2012). Comprehensive study on associations between nine SNPs and glioma risk. Asian Pac J Cancer Prev, 13, 4905-8.   DOI   ScienceOn
25 Liu Y, Scheurer ME, El-Zein R, et al (2009). Association and interactions between DNA repair gene polymorphisms and adult glioma. Cancer Epidemiol Biomarkers Prev, 18, 204-14.   DOI   ScienceOn
26 Liu Y, Shete S, Hosking F, et al (2010). Genetic advances in glioma: susceptibility genes and networks. Curr Opin Genet Dev, 20, 239-44.   DOI   ScienceOn