• Title/Summary/Keyword: XPS spectra

Search Result 192, Processing Time 0.034 seconds

A Study on PTC/NTC Behavior of Fluorinated Carbon Black-filled HDPE Matrix Compounds (불소처리된 카본블랙을 충전한 HDPE 기지 컴파운드의 PTC/NTC 특성에 관한 연구)

  • Soo-Jin Park;Su-Wan Song;Min-Kang Seo;Jae-Sup Shin;Kyuchul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.147-154
    • /
    • 2003
  • In this study, the fluorinated carbon blacks(CB) were used to reduce the negative temperature coefficient (NTC) phenomenon of the CB-filled high density polyethylene(HDPE) compounds in the fluorination pressure of 0.1-0.4 MPa. The changes in surface properties of the CB were investigated by using FT-IR, XPS and contact angle measurements. From the FT-IR results, the fluorinated CB showed the C-F absorption peak at 1400-1000 cm$^{-1}$ and the peak intensity was increased with increasing the fluorination pressure. Also, the analysis of XPS spectra of the fluorinated CB indicated that fluorine content was increased with increasing the fluorination pressure. Meanwhile, the surface free energy of the fluorinated CB was decreased with increasing the fluorination pressure. Consequently, the increase of fluorine contents on CB made a disappearance of NTC behaviors of CB/HDPE compounds, which was probably due to the reduction of CB reaggregation after melting point of the HDPE, resulting from decreasing the surface free energy of CB particles.

Development of novel oxyfluoride glasses and glass ceramics for photoluminescence material by a containerless processing (무용기 용융법을 활용한 형광소재용 결정화 유리 개발)

  • Hyerin Jo;Minsung Hwang;Youngjin Lee;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.181-186
    • /
    • 2023
  • In this study, novel Eu2O3-BaF2-La2O3-B2O3 oxyfluoride glasses and glass ceramics were developed by a containerless processing. Differential thermal analysis (DTA) analysis was performed to analyze the thermophysical properties of oxyfluoride glasses doped with Eu2O3, and photoluminescence (PL) characteristics were analyzed to evaluate the luminous efficiency depending on the degree of crystallinity. The glass transition temperature decreased with increasing BaF2 concentration since BaF2 acts as a network modifier in this glass system. In addition, thermal stability which can be estimated by the difference between the glass transition temperature and the onset temperature of the crystallization decreased with increasing BaF2 contents. The peak related to the BaF2 crystal was confirmed after the crystallization by X-ray Diffraction (XRD) analysis. Photoluminescence intensity increased after the crystallization which indicates that the Eu3+ ions are sited in BaF2 crystal. La 3d5/2 x-ray photoelectron spectroscopy (XPS) and F1s XPS spectra were analyzed to precisely understand the behavior of the fluorine ion in the glass structure. Fluorine tends to bond with the network modifying cations such as La3+ and Ba2+ ions and after the crystallization the La-F bonds decreased because F- ions used to form BaF2 crystals.

Characterization of Ni Oxide Nanofibers by Electrospinning

  • Park, Ju-Yeon;Go, Seong-Wi;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.379.2-379.2
    • /
    • 2016
  • The Ni oxide/PVP nanofibers were synthesized by sol-gel and electrospinning technique. The obtained Ni oxide/PVP (polyvinylpyrrolidone) nanofibers were calcined to remove the PVP compound at 873 and 1173 K. The Ni oxide/PVP nanofibers were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The SEM images showed that the mat form was prepared by calcination of Ni oxide/PVP nanofibers at 873 K. And the crystal structure of Ni oxide at 1173 K was also confirmed by SEM images. XRD results shows the crystallinity of metallic Ni and NiO. TEM images also verified the crystal phase of Ni and Ni oxide. XP spectra revealed that the oxidation state of Ni to conclude the chemical composition of Cu oxide nanofibers.

  • PDF

Surface Characteristics of Direct Fluorinated Single-walled Carbon Nanotubes

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2071-2076
    • /
    • 2009
  • The single-walled carbon nanotubes (SWCNTs) produced by chemical vapor deposition (CVD) were directly fluorinated with fluorine ($F_2$) gas in a temperature range 20 ~ 400 ${^{\circ}C}$. The surface properties and morphology of the SWCNTs were investigated in terms of fluorination temperature. As a result, Raman spectra showed a pair of bands at 1340 and 1590 $cm^{-1}$ peculiar to disordered $sp^2$-carbons. These results indicated that C-F bonds were formed on the rear surfaces of the nanotubes by fluorination, while the external surfaces as well as the layers between the internal and external surfaces retained their $sp^2$-hybridization. XPS analysis exhibited that fluorine atoms were bonded to carbon atoms on internal surfaces (rear surfaces) of the nanotubes and the amount of fluorine attached on the nanotubes was increased with increasing the fluorination temperature. Consequently, the direct fluorination of carbon nanotubes led to functionalization and modification of pristine nanotubes with respect to surface and morphological properties.

Optical properties of amorphous $Si_xC_yN_z$ ternary thin films prepared by plasma enhanced chemical vapor deposition

  • Zhang, Z.H.;Fan, X.J.;Guo, H.X.;Zhang, W.;Zhang, C.Y.;Luo, F.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.190-196
    • /
    • 1998
  • Amorphous ternary $Si_xC_yN-z$ thin films were obtained by plasma enhanced chemical vapor deposition(PECVD) using $N_2, SiH_4 \;and \;C_2H_4$ as the reaction sources. The chemical state were characterized by x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy(FTIR). The optical properties of the thin films were investigated by UV-visible spectrophotometer and ellipsometer, and the optical band gaps of thin films were determined from corresponding transmittance spectra following Tauc equation.

  • PDF

Combined effect of nitrogen- and oxygen functional groups on electrochemical performance of surface treated multi-walled carbon nanotubes (표면처리된 탄소나노튜브의 질소 및 산소관능기 도입에 따른 전기화학적 특성)

  • Kim, Ji-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.214.1-214.1
    • /
    • 2011
  • In this work, the electrochemical properties of the surface treated multi-walled carbon nanotubes (MWNTs) are investigated for supercapacitors. Nitrogen- and oxygen functional groups containing MWNTs are prepared by nitrogen precursors and acidic treatment, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and Zeta-potential measurements. The electrochemical properties of the MWNTs are investigated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M $H_2SO_4$ at room temperature. As a result, these functionalized MWNTs lead to an increase in the specific capacitance as compared with the pristine MWNTs. It proposes that the pyridinic and pyridinic-N-oxides nitrogen species influence on the specific capacitance due to their positive charges, and thus an improved electron transfer at high current loads, since they are the most important functional groups affecting capacitive behaviors.

  • PDF

Atomic Layer Deposition of $Sb_2S_3$ Thin Films on Mesoporous $TiO_2$

  • Han, Gyu-Seok;Jeong, Jin-Won;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.282-282
    • /
    • 2013
  • The antimony sulfide ($Sb_2S_3$) thin films were deposited using the gas phase method which known as atomic layer deposition (ALD) on mesoporous micro-films. Tris (dimethylamido) antimony (III[$(Me_2N)_3Sb$] and hydrogensulfide ($H_2S$) were used as precursors to deposit $Sb_2S_3$. Self-terminating nature of $(Me_2N)_3Sb$ and $H_2S$ reaction were demonstrated by growth rate saturation versus precursors dosing time. Absorption spectra and extinction coefficient were investigated by UV-VIS spectroscopy. Scanning electron microscopic analysis and X-ray photoelectron spectroscopy (XPS) depth profile were employed to determine the conformal deposition.

  • PDF

Fluoroalkylation of the Surface of Hydrophilic Polyurethane Breathable Membrane (플루오르알킬화에 의한 친수성 폴리우레탄 필름 표면의 개질)

  • Hwang, Ji-Hyun;Oh, Kyoung-Suk;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.30-36
    • /
    • 2013
  • Swelling and subsequent deformation of membranes by water wetting are regarded as a prime drawback of hydrophilic polyurethane breathable film. Fluoroalkylated surface was prepared by reacting the film with hexamethylene diisocyanate(HDI) and 2-perfluorohexyl ethanol. IR spectra and XPS results showed that the fluoroalkyl group was successfully introduced to the film surface with hexamethylene linkage. Water contact angle was increased from $68.7^{\circ}$ up to $144.2^{\circ}$ with the degree of fluoroalkylation. Decrease in water-vapor permeability was minimized even for the film of highest fluoroalkylation.

Properties of N doped ZnO grown by DBD-PLD (DBD-PLD 방법을 이용하여 N 도핑된 ZnO 박막의 특성 조사)

  • Leem, Jae-Hyeon;Kang, Min-Seok;Song, Wong-Won;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.15-16
    • /
    • 2008
  • We have grown N-doped ZnO thin films on sapphire substrate by employing dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound exciton peak ($A^0X$) that indicated the successful p-type doping of ZnO with N.

  • PDF

Characterization and Application of DLC Films Produced by New Combined PVD-CVD Technique

  • Chekan, N.M.;Kim, S.W.;Akula, I.P.;Jhee, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • A new advanced combined PVD/CVD technique of DLC film deposition has been developed. Deposition of a DLC film was carried out using a pulsed carbon arc discharge in vapor hydrocarbon atmosphere. The arc plasma enhancing CVD process promotes dramatic increase in the deposition rate and decrease of compressive stress as well as improvement of film thickness uniformity compared to that obtained with a single PVD pulsed arc process. The optical spectroscopy investigation reveals great increase in radiating components of $C_2$ Swan system molecular bands due to acetylene molecules decomposition. AFM, Raman spectroscopy, XPS and nano-indentation were used to characterize DLC films. The method ensures obtaining a new superhard DLC nano-material for deposition of protective coatings onto various industrial products including those used in medicine.