• 제목/요약/키워드: X-rays

검색결과 776건 처리시간 0.03초

X선 조사에 의해 (Ba, Sr) FBr : Eu 형광 물질에 생성되는 결함 특성 (Defect Analysis of Phospher (Ba, Sr) FBr : Eu by X-Ray Irradiation)

  • 신중기;이종용;배석환;김재홍;권준현
    • 한국재료학회지
    • /
    • 제18권8호
    • /
    • pp.427-431
    • /
    • 2008
  • The mechanical property of a phosphore layer was investigated by measuring the resolution (LP/mm) and by positron annihilation spectroscopy and SEM. Image plate samples containing the phosphore layer were irradiated by X-rays in a hospital numerous times over a course of several years. The LP/mm values of a (Ba,Sr)FBr : Eu image plate irradiated by X-rays varied between 2.2 and 2.0 over a period of four years. Coincidence Doppler Broadening (CDB) positron annihilation spectroscopy was used to analyze defect structures. The S parameters of the samples from hospital use varied from 0.6219 to 0.6232. There was a positive relationship between the time of exposure to the X-rays and the S parameters. Most of the defects were found to have been generated by X-rays.

A Study and Analysis of COVID-19 Diagnosis and Approach of Deep Learning

  • R, Mangai Begum
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.149-158
    • /
    • 2022
  • The pandemic of Covid-19 (Coronavirus Disease 19) has devastated the world, affected millions of people, and disrupted the world economy. The cause of the Covid19 epidemic has been identified as a new variant known as Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV2). It motives irritation of a small air sac referred to as the alveoli. The alveoli make up most of the tissue in the lungs and fill the sac with mucus. Most human beings with Covid19 usually do no longer improve pneumonia. However, chest x-rays of seriously unwell sufferers can be a useful device for medical doctors in diagnosing Covid19-both CT and X-ray exhibit usual patterns of frosted glass (GGO) and consolidation. The introduction of deep getting to know and brand new imaging helps radiologists and medical practitioners discover these unnatural patterns and pick out Covid19-infected chest x-rays. This venture makes use of a new deep studying structure proposed to diagnose Covid19 by the use of chest X-rays. The suggested model in this work aims to predict and forecast the patients at risk and identify the primary COVID-19 risk variables

kV X-선에서 원통형전리함의 선질인자 결정에 관한 연구: IAEA 프로토클 고찰과 N23333, N30001 전리함에 대한 몬테칼로 계산 및 측정 (Determination of Quality Factors for Cylindrical Ionization Chambers in kV X-rays: Review of IAEA Dosimetry Protocol and Monte Carlo Calculations and Measurements for N23333 and N30001 Chambers)

  • 이강규;임천일;장세경;문성록;정동혁
    • 한국의학물리학회지:의학물리
    • /
    • 제16권2호
    • /
    • pp.53-61
    • /
    • 2005
  • 본 연구에서는 kV X-선에 대하여 원통형전리함의 선질인자를 몬테칼로 계산과 측정으로 결정하였다. 대상 X-선은 KFDA에 설치되어 있으며 에너지스펙트럼과 선질이 명시된 $60\~300kV$ 범위의 X-선(ISO-4037)이었으며, 전리함은 PTW N23333과 N30001이었다. 이론적 계산과 몬테칼로 계산으로 구한 공기커마와 공동의 흡수선량으로부터 IAEA프로토콜의 $R_{\mu}$$R_{Q,Q_{0}}$인자를 결정하였다. 두 전리함의 반응 범위는 $80\~250kV$ 영역에서 모두 $\pm3\~4\%$를 보였으나, N30001 전리함의 경우에 $110\~300kV$ 영역에서 $\pm1.7\%$로서 평탄한 특성을 보였다. 본 연구로부터 kV X-선에 대한 선량평가에 대하여 고찰할 수 있었으며, 프로토콜의 적용을 위하여 에너지의존성의 평가가 중요함을 알 수 있었다.

  • PDF

Fundamental Study of nanoDot OSL Dosimeters for Entrance Skin Dose Measurement in Diagnostic X-ray Examinations

  • Okazaki, Tohru;Hayashi, Hiroaki;Takegami, Kazuki;Okino, Hiroki;Kimoto, Natsumi;Maehata, Itsumi;Kobayashi, Ikuo
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.229-236
    • /
    • 2016
  • Background: In order to manage the patient exposure dose in X-ray diagnosis, it is preferred to evaluate the entrance skin dose; although there are some evaluations about entrance skin dose, a small number of report has been published for direct measurement of patient. We think that a small-type optically stimulated luminescence (OSL) dosimeter, named nanoDot, can achieve a direct measurement. For evaluations, the corrections of angular and energy dependences play an important role. In this study, we aimed to evaluate the angular and the energy dependences of nanoDot. Materials and Methods: We used commercially available X-ray diagnostic equipment. For angular dependence measurement, a relative response of every 15 degrees of nanoDot was measured in 40-140 kV X-ray. And for energy dependence measurement, mono-energetic characteristic X-rays were generated using several materials by irradiating the diagnostic X-rays, and the nanoDot was irradiated by the characteristic X-rays. We evaluated the measured response in an energy range of 8.1-75.5 keV. In addition, we performed Monte-Carlo simulation to compare experimental results. Results and Discussion: The experimental results were in good agreement with those of Monte-Carlo simulation. The angular dependence of nanoDot was almost steady with the response of 0 degrees except for 90 and 270 degrees. Furthermore, we found that difference of the response of nanoDot, where the nanoDot was irradiated from the randomly set directions, was estimated to be at most 5%. On the other hand, the response of nanoDot varies with the energy of incident X-rays; slightly increased to 20 keV and gradually decreased to 80 keV. These results are valuable to perform the precise evaluation of entrance skin dose with nanoDot in X-ray diagnosis. Conclusion: The influence of angular dependence and energy dependence in X-ray diagnosis is not so large, and the nanoDot OSL dosimeter is considered to be suitable dosimeter for direct measurement of entrance surface dose of patient.

비화재보를 위한 X-ray tube 내 열 유동해석에 관한 연구 (A study on thermal fluid analysis in X-ray tube for non-fire alarm)

  • 윤동민;전용한
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.33-38
    • /
    • 2022
  • Currently, Korea is an aging society, and it is expected to enter a super-aging society in about 4 years. Accordingly, many X-ray technologies are being developed. In X-rays, 99% of X-rays are converted into heat energy and 1% into light energy (X-rays). 99% of the thermal energy raises the temperature of the anode and its surroundings, and the cooling system is an important factor as overheating can affect the deterioration of X-ray quality and shortened lifespan. There is a method of forced air cooling using natural convection. Therefore, in this study, when X-rays were taken 5 times, Flow analysis was performed on heat removal according to temperature rise and cooling time for the heat generated at the anode of the X-ray tube (input power 60kW, 75kW, 90kW). Based on one-shot, the most rapid temperature rise section increased by more than 57% to 0.03 seconds, A constant temperature rises from 0.03 seconds to 0.1 seconds, It is judged that the temperature rises by about 8.2% or more at one time. After one-shot cooling, the cooling drops sharply from about 60% to 0.03 seconds, It is judged that the temperature has cooled by more than 86% compared to the temperature before shooting. One-shot is cooled by more than 86% with cooling time after 0.1 seconds, As the input power of the anode increases, the cooling temperature gradually increases. Since the tungsten of the anode target inside the X-ray tube may be damaged by thermal shock caused by a rapid temperature rise, an improvement method for removing thermal energy is required when using a high-input power supply.

반도체 제조 이온주입 공정의 이온 임플란타 장치에서 엑스레이 발생 특성 (Characterization of X-ray Emitted in the Ion Implantation Process of Semiconductor Operations)

  • 박동욱;조경이;김소연;이승희;정은교
    • 한국산업보건학회지
    • /
    • 제33권4호
    • /
    • pp.439-446
    • /
    • 2023
  • Objectives: The aims of this study are to investigate how X-rays are emitted to surrounding parts during the ion implantation process, to analyze these emissions in relation to the properties of the ion implanter equipment, and to estimate the resulting exposure dose. Eight ion implanters equipped with high-voltage electrical systems were selected for this study. Methods: We monitored X-ray emissions at three locations outside of the ion implanters: the accelerator equipped with a high-voltage energy generator, the impurity ion source, and the beam line. We used a Personal Portable Dose Rate and Survey Meter to monitor real-time X-ray levels. The SX-2R probe, an X-ray Features probe designed for use with the RadiagemTM meter, was also utilized to monitor lower ranges of X-ray emissions. The counts per second (CPS) measured by the meter were estimated and then converted to a radiation dose (𝜇Sv/hr) based on a validated calibration graph between CPS and μGy/hr. Results: X-rays from seven ion implanters were consistently detected in high-voltage accelerator gaps, regardless of their proximity. X-rays specifically emanated from three ion implanters situated in the ion box gap and were also found in the beam lines of two ion implanters. The intensity of these X-rays did not show a clear pattern relative to the devices' age and electric properties, and notably, it decreased as the distance from the device increased. Conclusions: In conclusion, every gap, in which three components of the ion implanter devices were divided, was found to be insufficiently shielded against X-ray emissions, even though the exposure levels were not estimated to be higher than the threshold.

Clinical Comparison of the Predictive Value of the Simple Skull X-Ray and 3 Dimensional Computed Tomography for Skull Fractures of Children

  • Kim, Young-Im;Cheong, Jong-Woo;Yoon, Soo Han
    • Journal of Korean Neurosurgical Society
    • /
    • 제52권6호
    • /
    • pp.528-533
    • /
    • 2012
  • Objective : In the pediatric population the skull has not yet undergone ossification and it is assumed that the diagnostic rate of skull fractures by simple X-rays are lower than that of adults. It has been recently proposed that the diagnostic rates of skull fractures by 3-dimensional computer tomography (3D-CT) are higher than simple X-rays. The authors therefore attempted to compare the diagnostic rates of pediatric skull fractures by simple X-rays and 3D-CTs with respect to the type of fracture. Methods : One-hundred patients aged less than 12 years who visited the Emergency Center for cranial injury were subject to simple X-rays and 3D-CTs. The type and location of the fractures were compared and Kappa statistical analysis and the t-test were conducted. Results : Among the 100 pediatric patients, 65 were male and 35 were female. The mean age was $50{\pm}45$ months. 63 patients had simple skull fractures and 22 had complex fractures, and the types of fractures were linear fractures in 74, diastatic fractures 15, depressed fractures in 10, penetrating fracture in 1, and greenstick fractures in 3 patients. Statistical difference was observed for the predictive value of simple skull fractures' diagnostic rate depending on the method for diagnosis. A significant difference of the Kappa value was noted in the diagnosis of depressed skull fractures and diastatic skull fractures. Conclusion : In the majority of pediatric skull fractures, 3D-CT showed superior diagnosis rates compared to simple skull X-rays and therefore 3D-CT is recommended whenever skull fractures are suspected. This is especially true for depressed skull fractures and diastatic skull fractures.

Comparison of Parallel and Fan-Beam Monochromatic X-Ray CT Using Synchrotron Radiation

  • Toyofuku, Fukai;Tokumori, Kenji;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.407-410
    • /
    • 2002
  • Monochromatic x-ray CT has several advantages over conventional CT, which utilizes bremsstrahlung white x-rays from an x-ray tube. There are several methods to produce such monochromatic x-rays. The most popular one is crystal diffraction monochromatization, which has been commonly used because of the fact that the energy spread is very narrow and the energy can be changed continuously. The alternative method is the use of fluorescent x-ray, which has several advantages such as large beam size and fast energy change. We have developed a parallel-beam and a fan-beam monochromatic x-ray CT, and compared some characteristics such as accuracy of CT numbers between those systems. The fan beam monochromatic x-rays were generated by irradiating target materials by incident white x-rays from a bending magnet beam line NE5 in 6.5 GeV Accumulation Ring at Tukuba. The parallel beam monochromatic x-rays were generated by using a silicon double crystal monochromator at the bending magnet beam line BL-20BM in Spring-8. A Cadmium telluride (CdTe) 256 channel array detector with 512mm sensitive width capable of operating at room temperature was used in the photon counting mode. A cylindrical phantom containing eight concentrations of gadolinium was used for the fan beam monochromatic x-ray CT system, while a phantom containing acetone, ethanol, acrylic and water was used for the parallel monochromatic x-ray CT system. The linear attenuation coefficients obtained from CT numbers of those monochromatic x-ray CT images were compared with theoretical values. They showed a good agreement within 3%. It was found that the quantitative measurement can be possible by using the fan beam monochromatic x-ray CT system as well as a parallel beam monochromatic X-ray CT system.

  • PDF

X-ray and gamma ray shielding behavior of concrete blocks

  • Hernandez-Murillo, Christian Geovanni;Contreras, J. Rafael Molina;Escalera-Velasco, Luis Alberto;de Leon-Martineza, Hector Asael;Rodriguez-Rodriguez, Jose Antonio;Vega-Carrillo, Hector Rene
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1792-1797
    • /
    • 2020
  • The shielding characteristics of two concrete blocks, widely used in the building industry in Mexico have been determined. These characteristics include the mass interaction coefficients, the linear attenuation coefficients and the half-value layers. The energy-dispersed X-ray fluorescence shows that the percentage mass content of each atom in the sample, and the atomic volume of the constituent elements of a material, plays an important role in its shielding capabilities. The total linear attenuation coefficients and the half-value layers were analyzed for a set of photon energies related to X-rays for diagnosis and cancer treatment with linear accelerators. Our results show that the concrete blocks have similar photon attenuation coefficients than the Portland concrete and better features than gypsum.

방사능 폭발물의 X-ray 영상판독에 관한 연구 (A Study on the X-ray Image Reading of Radiological Dispersal Device)

  • 정근우;박경진
    • 한국산업융합학회 논문집
    • /
    • 제27권2_2호
    • /
    • pp.437-443
    • /
    • 2024
  • The purpose of radiological Dispersal Device(RDD) is to kill people by explosives and to cause radiation exposure by dispersing radioactive materials. And It is a form of explosive that combines radioactive materials such as Co-60 and Ir-192 with improvised explosives. In this study, we tested and evaluated whether it was possible to read the internal structure of an explosive using X-rays in a radioactive explosive situation. The improvised explosive device was manufactured using 2 lb of model TNT explosives, one practice detonator, one 9V battery, and a timer switch in a leather briefcase measuring 41×35×10 cm3. The radioactive material used was the Co-60 source used in the low-level gamma ray irradiation device operated at the Advanced Radiation Research Institute of the Korea Atomic Energy Research Institute. The radiation dose used was gamma ray energy of 1.17 MeV and 1.33 MeV from a Co-60 source of 2208 Ci. The dose rates are divided into 0.5, 1, 2, and 4 Gy/h, and the exposure time was divided into 1, 3, 5, and 10 minutes. Co-60 source was mixed with the manufactured explosive and X-ray image reading was performed. As a result of the experiment, the X-ray image appeared black in all conditions divided by dose rate and time, and it was impossible to confirm the internal structure of the explosive. This is because γ-rays emitted from radioactive explosives have higher energy and stronger penetrating power than X-rays, so it is believed that imaging using X-rays is limited By blackening the film. The results of this study are expected to be used as basic data for research and development of X-ray imaging that can read the internal structure of explosives in radioactive explosive situations.