Browse > Article
http://dx.doi.org/10.1016/j.net.2020.01.007

X-ray and gamma ray shielding behavior of concrete blocks  

Hernandez-Murillo, Christian Geovanni (Instituto Tecnologico de Aguascalientes)
Contreras, J. Rafael Molina (Instituto Tecnologico de Aguascalientes)
Escalera-Velasco, Luis Alberto (Instituto Tecnologico de Aguascalientes)
de Leon-Martineza, Hector Asael (Instituto Tecnologico de Aguascalientes)
Rodriguez-Rodriguez, Jose Antonio (Unidades Academicas Ingenieria II y Estudios Nucleares de la, Universidad Autonoma de ZacatecasC)
Vega-Carrillo, Hector Rene (Unidades Academicas Ingenieria II y Estudios Nucleares de la, Universidad Autonoma de ZacatecasC)
Publication Information
Nuclear Engineering and Technology / v.52, no.8, 2020 , pp. 1792-1797 More about this Journal
Abstract
The shielding characteristics of two concrete blocks, widely used in the building industry in Mexico have been determined. These characteristics include the mass interaction coefficients, the linear attenuation coefficients and the half-value layers. The energy-dispersed X-ray fluorescence shows that the percentage mass content of each atom in the sample, and the atomic volume of the constituent elements of a material, plays an important role in its shielding capabilities. The total linear attenuation coefficients and the half-value layers were analyzed for a set of photon energies related to X-rays for diagnosis and cancer treatment with linear accelerators. Our results show that the concrete blocks have similar photon attenuation coefficients than the Portland concrete and better features than gypsum.
Keywords
Concrete block; X rays; Gamma-rays; XCOM; Shielding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Croymans, F. Leonardi, R. Trevisi, C. Nuccetelli, S. Schreurs, W. Schroeyers, Gamma exposure from building materials - a dose model with expanded gamma lines from naturally occurring radionuclides applicable in nonstandard rooms, Constr. Build. Mater. 159 (2018) 768-778.   DOI
2 S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360.   DOI
3 S. Ozen, C. Sengul, T. Erenoglu, U. Colak, Properties of Heavyweight concrete for structural and radiation shielding purposes, Arabian J. Sci. Eng. 41 (2016) 1573-1584.   DOI
4 I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Photon attenuation coefficients of concrete includes barite in different rate, Ann. Nucl. Energy 37 (2010) 910-914.   DOI
5 H. Baltas, M. Sirin, A. Celik, I. Ustabas, A.M. El-Khayatt, Radiation shielding properties of mortars with minerals and ores additives, Cement Concr. Compos. 97 (2019) 268-278.   DOI
6 M.I. Sayyed, H.O. Tekin, O. Kilicoglu, O. Agar, M.H.M. Zaid, Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results, Results in Physics 11 (2018) 40-45.   DOI
7 M. Alwaeli, Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes, J. Clean. Prod. 166 (2017) 157-162.   DOI
8 M. Cullu, H. Ertas, Determination of the effect of lead mine waste aggregate on some concrete properties and radiation shielding, Constr. Build. Mater. 125 (2016) 625-631.   DOI
9 E. Gallego, A. Lorente, H.R. Vega-Carrillo, Testing of a high-density concrete as neutron shielding material, Nucl. Technol. 168 (2009) 399-404.   DOI
10 M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M.I. Sayyed, A comparative study on gamma photon shielding features of various germanate glass systems, Compos. B Eng. 165 (2019) 636-647.   DOI
11 M. Dong, X. Xue, S. Liu, H. Yang, Z. Li, M.I. Sayyed, O. Agar, Using iron concentrate in Liaoning Province, China, to prepare material for X-Ray shielding, J. Clean. Prod. 210 (2019) 653-659.   DOI
12 S.A. Issa, A.M.A. Mostafa, T.A. Hanafy, M. Dong, X. Xue, Comparison study of photon attenuation characteristics of Poly vinyl alcohol (PVA) doped with $Pb(NO_3)2$ by MCNP5 code, XCOM and experimental results, Prog. Nucl. Energy 111 (2019) 15-23.   DOI
13 T. Ozdemir, A. Gungor, I.K. Akbay, H. Uzun, Y. Babuccuoglu, Nano lead oxide and EPDM composite for development of polymer-based radiation shielding material: gamma irradiation and attenuation tests, Radiat. Phys. Chem. 144 (2018) 248-255.   DOI
14 A. Kumar, R. Kaur, M.I. Sayyed, M. Rashad, M. Singh, A.M. Ali, Physical, structural, optical and gamma ray shielding behavior of (20+x) PbO - 10 BaO - 10 $Na_2O$ - 10 MgO - (50-x) $B_2O_3$ glasses, Phys. B Condens. Matter 552 (2019) 110-118.   DOI
15 V.P. Singh, N. Badiger, Study of mass attenuation coefficients, effective atomic numbers and electron densities of carbon steel and stainless steels, Radioprotection 48 (2013) 431-443.   DOI
16 M.C. Veale, L.L. Jones, B. Thomas, P. Seller, M.D. Wilson, K. Iniewski, Improved spectroscopic performance in compound semiconductor detectors for high rate X-ray and gamma-ray imaging applications: a novel depth of interaction correction technique, Nucl. Instrum. Methods Phys. Res. 927 (2019) 37-45.   DOI
17 C.A. Marquez-Mata, H.R. Vega-Carrillo, J.M. Chavez Mata, J.J. Araiza-Ibarra, J.J. Ortega-Sigala, M.I. Escalona-Llaguno, A. Garcia-Duran, Characterization of six types of Mexican Onyx, Appl. Radiat. Isot. 146 (2019) 139-144.   DOI
18 S. Yasmin, M.U. Khandaker, B. S Barua, M.N. Mustafa, F.U.Z. Chowdhury, M.A. Rashid, D.A. Bradley, Ionizing Radiation Shielding Effectiveness of Decorative Building Materials (Porcelain and Ceramic Tiles) Used in Bangladeshi Dwellings, Indoor and Built Environment, 2018, https://doi.org/10.1177/1420326X18798883.
19 H.R. Vega-Carrillo, K.A. Guzman-Garcia, A. Rodriguez-Rodriguez, C.A. Juarez-Alvarado, V.P. Singh, H.A. de Leon-Martinez, Photon and neutron shielding features of quarry tuff, Ann. Nucl. Energy 112 (2018) 411-417.   DOI
20 M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Sections Database, National Institute of Standards and Technology, Gaithersburg, MD, 2010 [Online] Available:, version 1.5. http://physics.nist.gov/xcom. (Accessed 26 May 2019).
21 NCRP, Structural Shielding Design for Medical X-Ray Imaging Facilities, National Council of Radiation and Measurements, 2005. Report No. 172.
22 L. Gerward, N. Guilbert, K. Bjorn Jensen, H. Levring, X-ray absorption in matter: re-engineering XCOM, Radiat. Phys. Chem. 60 (2001) 23-24.   DOI
23 X-5 Monte Carlo Team, MCNP - a general Monte Carlo N-particle transport code, in: Volume I: Overview and Theory, Los Alamos Natl. Lab., 2003. LA-UR-03-1987, Version 5.
24 S. Agostinelli, J. Allison, K. Amako, Geant4 - a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250-303.   DOI
25 INEGI, Percentage of Housing with Walls of Solid Materials, National Institute of Statistics and Geography of Mexico, 2019. http://en.www.inegi.org.mx/.
26 J. Arrieta Freyre, E. Pena Herrera Deza, Fabricacion y bloques de concreto con una mesa vibradora. Centro Peruano Japones de Investigaciones Sísmicas y Mitigacion de Desastres, Programa Científico, 2001, pp. 10-15. PC-CISMID, 1999-2000.
27 NMX, Building Industry-Aggregates-Determination of the Specific Mass and Water Absorption of Coarse Aggregates, Mexican Standard, 2014. NMX-C-164-ONNCCE-2014.
28 Lenntech Data, Elementos químicos ordenados por su masa atomica [Online] Available: https://www.lenntech.es/tabla-peiodica/masa-atomica.htm, 2019.
29 K.S. Mann, J. Singla, V. Kumar, G.S. Sidhu, Verification of some building materials as gamma-ray shields, Radiat. Prot. Dosim. 151 (2012) 183-195.   DOI
30 Q.C. Meisinger, C.M. Stahl, M.P. Andre, T.B. Kinney, I.G. Newton, Radiation protection for the fluoroscopy operator and staff, Am. J. Roentgenol. 207 (2016) 745-754.   DOI
31 NCRP, Management of exposure to ionizing radiation: radiation protection guidance for the United States report No. 180, J. Radiol. Prot. 39 (2018) 4-9.