• Title/Summary/Keyword: X-ray techniques

Search Result 639, Processing Time 0.03 seconds

Interfacial Diffusion in Fe/Cr Magnetic Multilayers Studied by Synchrotron X-ray Techniques (방사광 x-선 기법에 의한 다층형 Fe/Cr 자성박막의 계면확산 연구)

  • 조태식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.223-227
    • /
    • 2004
  • We have studied the interfacial diffusion of Fe/Cr multilayers using synchrotron x-ray techniques, such as x-ray reflectivity, extended x-ray absorption fine structures (EXAFS), and high-resolution x-ray scattering. The results of x-ray reflectivity indicated that the interfacial roughness of Fe/Cr multilayers increased with the Cr-layer thickness. The Fourier transform (FT) of EXAFS data clearly showed that the Fe atoms dominantly diffused into the stable Cr layers at the Fe/Cr interface. The results of high-resolution x-ray scattering supported the interfacial diffusion of Fe atoms. Out study revealed that the dominantly interfacial diffusion of Fe atoms into the Cr layers effects the interfacial roughness of the Fe/Cr multilayers.

Interfacial diffusion in Fe/Cr magnetic multilayers studied by synchrotron x-ray techniques (다층형 Fe/Cr 자성박막에서 계면확산의 방사광 x-선 연구)

  • Cho, Tae-Sik;Jeong, Ji-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.84-87
    • /
    • 2003
  • The interfacial diffusion in Fe/Cr/MgO(001) multilayers has been studied using synchrotron x-ray techniques, such as x-ray reflectivity, extended x-ray absorption fine structures (EXAFS), and anomalous x-ray scattering (AXS). The results of x-ray reflectivity indicated that the interfacial roughness of Fe/Cr multilayers with Cr-$4{\AA}$-thick was larger than that with Cr-$4{\AA}$-thick. The results of EXAFS indicated that the Fe element dominantly diffuse into the stable Cr layers at the Fe/Cr interface. The AXS was certified the existence of the interdiffused Fe element in the Cr layers. Our study revealed that the rough interface of the Fe/Cr multilayers was caused by the interfacia diffusion of Fe element into the Cr layers.

  • PDF

Development of X-ray PIV System Using a Medical X-ray Tube (임상용 X-선관을 이용한 X-ray PIV시스템의 개발)

  • Yim, Dae-Hyun;Kim, Guk-Bae;Kim, Do-Il;Lee, Hyong-Koo;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.403-406
    • /
    • 2006
  • A new medical X-ray PIV technique was developed using a conventional medical X-ray tube. To acquire images of micro-scale particles, the X-ray PIV system consists of an x-ray CCD camera with high spatial resolution, and a X-ray tube with small a focal spot. A new X-ray exposure control device was developed using a rotating disc shutter to make double pulses which are essential for PIV application. Synchronization methodology was also developed to apply the PIV technique to a conventional medical X-ray tube. In order to check the performance and usefulness of the developed X-ray PIV technique, it was applied to a glycerin flow in an opaque silicon tube. Tungsten particles which have high X-ray absorption coefficient were used as tracer particles. Through this preliminary test, the spatial resolution was found to be higher than ultrafast MRI techniques, and the temporal resolution was higher than conventional X-ray PIV techniques. By improving its performance further and developing more suitable tracers, this medical X-ray PIV technique will have strong potential in the fields of medical imaging or nondestructive inspection as well as diagnosis of practical thermo-fluid flows.

  • PDF

In situ Synchrotron X-ray Techniques for Structural Investigation of Electrode Materials for Li-ion Battery (방사광 X-선을 이용한 리튬이온전지 소재의 실시간 구조 분석 연구)

  • Han, Daseul;Nam, Kyung-Wan
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.402-416
    • /
    • 2019
  • The development of next-generation secondary batteries, including lithium-ion batteries (LIB), requires performance enhancements such as high energy/high power density, low cost, long life, and excellent safety. The discovery of new materials with such requirements is a challenging and time-consuming process with great difficulty. To pursue this challenging endeavor, it is pivotal to understand the structure and interface of electrode materials in a multiscale level at the atomic, molecular, macro-scale during charging / discharging. In this regard, various advanced material characterization tools, including the first-principle calculation, high-resolution electron microscopy, and synchrotron-based X-ray techniques, have been actively employed to understand the charge storage- and degradation-mechanisms of various electrode materials. In this article, we introduce and review recent advances in in-situ synchrotron-based x-ray techniques to study electrode materials for LIBs during thermal degradation and charging/discharging. We show that the fundamental understanding of the structure and interface of the battery materials gained through these advanced in-situ investigations provides valuable insight into designing next-generation electrode materials with significantly improved performance in terms of high energy/high power density, low cost, long life, and excellent safety.

Image Calibration Techniques for Removing Cupping and Ring Artifacts in X-ray Micro-CT Images (X-ray micro-CT 이미지 내 패임 및 동심원상 화상결함 제거를 위한 이미지 보정 기법)

  • Jung, Yeon-Jong;Yun, Tae-Sup;Kim, Kwang-Yeom;Choo, Jin-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.93-101
    • /
    • 2011
  • High quality X-ray computed microtomography (micro-CT) imaging of internal microstructures and pore space in geomaterials is often hampered by some inherent noises embedded in the images. In this paper, we introduce image calibration techniques for removing the most common noises in X-ray micro-CT, cupping (brightness difference between the periphery and central regions) and ring artifacts (consecutive concentric circles emanating from the origin). The artifacts removal sequentially applies coordinate transformation, normalization, and low-pass filtering in 2D Fourier spectrum to raw CT-images. The applicability and performance of the techniques are showcased by describing extraction of 3D pore structures from micro-CT images of porous basalt using artifacts reductions, binarization, and volume stacking. Comparisions between calibrated and raw images indicate that the artifacts removal allows us to avoid the overestimation of porosity of imaged materials, and proper calibration of the artifacts plays a crucial role in using X-ray CT for geomaterials.

SPECTROSCOPIC STUDIES IN X-RAY ASTRONOMY (X-선 천문 분야의 분광관측 연구)

  • CHOI CHUL-SUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.73-83
    • /
    • 2000
  • X-ray astronomy deals with measurements of the electromagnetic radiation in the energy range of $E\~0.1-100 keV (\lambda\~0.12-120{\AA})$. The wavelength of X-ray is comparable to the size of atoms, so that the photons in the X-ray range are usually produced and absorbed by the atomic processes. Since the launch of the first X-ray astronomy satellite 'Uhuru' in 1970, technological advances in a launch capability and a detection capability make X-ray astronomy one of the most rapidly evolving fields of astronomical research. Particularly, a spectral resolving power $E/{\Delta}E$ has been increased by an order of 2 - 3 (in the energy range of 0.1 - 10 keV) during the past 30years. In this paper, I briefly review a developing process of the resolving power and spectroscopic techniques. Then I describe important emission/absorption lines in X-ray astronomy, as well as diagnostics of gas property with line parameters.

  • PDF

이차전지 양극활물질의 chemical state 측정을 위한 X0ray Induced Electron Emission Spectroscopy (XIEES)의 활용

  • 이재철;송세안;임창빈
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.167-167
    • /
    • 2000
  • 전지 재료의 충방전 과정 연구에는 X-선 분말회절(x-ray powder diffraction techniques)과 중성자회절을 많이 사용하였다. 하지만 이러한 분석기술은 long-range order의 구조에 관한 정보를 제공하는데 유용하지만 atomic scale의 구조에 관한 정보를 얻기에는 한계가 있다. Li 전지에서의 전기화학적 반응에서는 cathode 물질에 포함된 전이금속의 산화, 환원 반응에 의한 Li 이온의 intercalation (charge process)과 deintercalation (discharge process) 현상이 일어난다. 이러한 충방전 과정은 알려지지 않은 다양한 형태의 위상 변화를 동반하게 되는데 x-선 이나 중성자를 이용한 powder diffraction techniques 로는 단지 정성적인 결정학적 정보를 얻을 수 있다. 따라서 최근에 원자 단위의 local structure에 관한 정보와 electrochemical state에 관한 정보를 동시에 얻을 수 있는 X-ray Absorption Fine Structure (XAFS) 분석기술을 Li 전지분석에 활용하기 시작하였다. XAFS는 하나의 x-ray 흡수원자에 대해서 주변원자들의 원자구조에 관한 정보와 구성 원소의 electrochemical state에 관한 정보를 얻을 수 있는 분석방법이다. X-ray Induced Electron Emission Spectroscopy (XIEES)는 x-ray에 의해서 방출된 전자를 검출하여 스펙트럼을 얻는 기능을 함축적으로 나타낸 것으로, x-ray를 물질 표면에 조사하여 발생하는 광전자, Auger 전자, 이차전자 등을 전자검출기(Channel Electron Multiplier: CEM)로 검출하는 기능과, 시료를 투과한 x-ray와 시료에서 발생하는 형광 x-ray를 비례계수기로 검출하는 기능을 가지고 있다. 이러한 검출 능력을 바탕으로 EXAFS, XANES, Standing Wave Technique, Elemental Composition Analysis, DXRD, Total Reflection Technique 등을 이용하여 물질을 구성하고 있는 원소의 성분, 미세원자구조, 전자구조에 관한 정보를 얻을 수 있는 새로운 spectrometer이다. 본 연구에서는 자체 개발한 XIEES의 XAFS 기능을 이용하여 여러 가지 방법으로 제조한 LiMn2-xO4와 LiMnO2, MnO2에서 Mn K-absorption edge에 대한 chemical state 변화를 측정하였다. Absorption edge에서 chemical shift를 측정하기 위해서는 방사광 가속기 수준의 에너지 분해능(~0.3eV)이 필요하다. 이번 연구에서는 SiO2(3140) monochromator를 사용하고 여기에 맞는 적절한 parameter를 적용하여 x-ray 에너지 분해능을 포항방사광가속기 수준으로 개선하였다. XIEES에서 얻은 스펙트럼과 포항방사광가속기에서 얻은 스펙트럼을 비교하였다. Chemical shift가 일어나는 경향은 두 실험 결과가 잘 일치하였다.

  • PDF

Searching for X-ray cavities in various galaxy environments

  • Shin, Jaejin;Woo, Jong-Hak;Mulchaey, John S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2014
  • In understanding "cooling flow" problem and the galaxy-SMBH co-evolution, AGN feedback is considered as one of the most important phenomena. Among various AGN feedback phenomena, X-ray cavities are particularly useful for studying AGN feedback over 10 kpc scales, as the origin of X-ray cavities is believed to be related to radio jet from AGN. For a comprehensive study of X-ray cavities, we collect all available diffuse X-ray data of galaxies in various galaxy environments, ranging from field galaxies to galaxy clusters, using the Chandra X-ray data archive. As a result we build up a sample of 87 targets showing enough X-ray photons to perform the analysis. Using modeling and unsharp masking techniques, we detected X-ray cavities and measured their physical properties (i.e., cavity size) for the 49 targets. Here, we present X-ray cavity properties and discuss environmental effects.

  • PDF

Survey on ultrafast time resolved X-ray diffraction measurements of crystal structure (X선의 초고속 결정구조 측정법)

  • Koo, Y.D.;Kim, Y.C.;Oh, C.S.
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.13-16
    • /
    • 2014
  • We have surveyed on significant progress in recent developments of accelerator-based pulsed X-ray sources has offered the opportunity for time-resolved studies on fast structure dynamics on the nanometer scale. The required and currently available techniques for time resolved X-ray diffraction measurements using the third-generation synchrotron radiation sources are summarized. Ultrafast X-ray experimental techniques are discussed for femtosecond studies at future synchrotron radiation sources.

X-ray Micro-Imaging Technique and Its Application to Micro-Bubbles in an Opaque Tube (X-ray Micro-Imaging 기법 소개 및 불투명 튜브 내부의 마이크로 버블 가시화 연구)

  • Lee Sang-Joon;Kim Seok;Paik Bu-Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.31-34
    • /
    • 2002
  • Imaging techniques using x-ray beam at high energies (>6KeV) such as contact radiography, projection microscopy, and tomography have been used to nondestructively discern internal structure of objects in material science, biology, and medicine. This paper introduces the x-ray micro-imaging method using 1B2 micro-probe line of PAL (Pohang Accelerator Laboratory). Cross-sectional information on low electron density materials can be obtained by probing a sample with coherent synchrotron x-ray beam in an in-line holography setup. Living organism such as plants, insects are practically transparent to high energy x-rays and create phase shift images of x-ray wave front. X-ray micro-images of micro-bubbles of $20\~120\;{\mu}m$ diameter in an opaque tube were recorded. Clear phase contrast images were obtained at Interfaces between bubbles and surrounding liquid due to different decrements of refractive index.

  • PDF