• Title/Summary/Keyword: X-ray spectrometry

Search Result 326, Processing Time 0.025 seconds

A Copper Shield for the Reduction of X-γ True Coincidence Summing in Gamma-ray Spectrometry

  • Byun, Jong-In
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • Background: Gamma-ray detectors having a thin window of a material with low atomic number can increase the true coincidence summing effects for radionuclides emitting X-rays or gamma-rays. This effect can make efficiency calibration or spectrum analysis more complicated. In this study, a Cu shield was tested as an X-ray filter to neglect the true coincidence summing effect by X-rays and gamma-rays in gamma-ray spectrometry, in order to simplify gamma-ray energy spectrum analysis. Materials and Methods: A Cu shield was designed and applied to an n-type high-purity germanium detector having an $X-{\gamma}$ summing effect during efficiency calibration. This was tested using a commercial, certified mixed gamma-ray source. The feasibility of a Cu shield was evaluated by comparing efficiency calibration results with and without the shield. Results and Discussion: In this study, the thickness of a Cu shield needed to avoid true coincidence summing effects due to $X-{\gamma}$ was tested and determined to be 1 mm, considering the detection efficiency desired for higher energy. As a result, the accuracy of the detection efficiency calibration was improved by more than 13% by reducing $X-{\gamma}$ summing. Conclusion: The $X-{\gamma}$ summing effect should be considered, along with ${\gamma}-{\gamma}$ summing, when a detection efficiency calibration is implemented and appropriate shielding material can be useful for simplifying analysis of the gamma-ray energy spectra.

Determination of Trace Elements in Atmospheric Dust by X-Ray Fluorescence Spectrometry(II) : X-ray Fluorescence Spectrometric Determination of Light Elements (형광 X선에 의한 대기분진중의 미량성분의 측정(II): 대기부유분진 중 경원소의 X-선 형광분석)

  • 이용근;박현미;이동수;이보경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.247-254
    • /
    • 1993
  • A simple and direct method is developed for the determination of light Elements in atmospheric particulates by X-ray fluorescence spectrometry. Calibration standards for the light elements such as Al, Mg, K, Ca, etc are prepared by filtering real atmospheric particulates over variable time and subsequently standardizing them by Inductively Coupled Plasma-Mass Spectrometry(ICP-MS) or Atomic Absorption Spectrophotometry(AAS) analysis. The validity of this calibration method is tested by analyzing more than 100 aerosol samples, collected at urban(Seoul) and rural(Padori) sites over a two year period with this method and then comparing them with those by other accuracy proven methods such as AAS or ICP-MS: for all metals tested the results showed reasonably good agreements (R $\geq$ 0.95).

  • PDF

Comparative Studies on the Discrimination of Angelicae Gigantis Radix by Near-infrared Spectroscopy, Electronic Nose and X-ray Fluorescence Spectrometry (근적외선분광법, 전자코 및 엑스선형광법을 이용한 당귀의 기원판별법 비교 연구)

  • 조창희;김수정;김효진
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.161-167
    • /
    • 2002
  • Angelicae gigantis radix is the root of the perennial plant, which belongs to the family Umbelliferae. However, this herbal drug is represented quite different chemical components according to its different genus name, though other herbal drugs (i.e. Leonuri Herba, Xanthii Fructus and so on) show similar constituents on the same name. The root of Angelica gigas containing the coumarin compounds is commonly used in Korea, while Angelica sinensis and Angelica acutiloba including phthalide compounds are used in China and Japan, respectively as Angelicae gigantis radix. In this paper, a nearinfrared spectroscopic method was developed to determine genus name of Angelica spp., especially A. gigas and A. sinensis which are commonly misused in herbal markets. X-ray fluorescence spectrometry and electronic nose have been also applied as nondestructive methods to discriminate A. gigas from A. sinensis according to their specific properties.

Characterization of Two-Dimensional Transition Metal Dichalcogenides in the Scanning Electron Microscope Using Energy Dispersive X-ray Spectrometry, Electron Backscatter Diffraction, and Atomic Force Microscopy

  • Lang, Christian;Hiscock, Matthew;Larsen, Kim;Moffat, Jonathan;Sundaram, Ravi
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.131-134
    • /
    • 2015
  • Here we show how by processing energy dispersive X-ray spectrometry (EDS) data obtained using highly sensitive, new generation EDS detectors in the AZtec LayerProbe software we can obtain data of sufficiently high quality to non-destructively measure the number of layers in two-dimensional (2D) $MoS_2$ and $MoS_2/WSe_2$ and thereby enable the characterization of working devices based on 2D materials. We compare the thickness measurements with EDS to results from atomic force microscopy measurements. We also show how we can use electron backscatter diffraction (EBSD) to address fabrication challenges of 2D materials. Results from EBSD analysis of individual flakes of exfoliated $MoS_2$ obtained using the Nordlys Nano detector are shown to aid a better understanding of the exfoliation process which is still widely used to produce 2D materials for research purposes.

The Determination of Rare Earth Oxides by X-Ray Fluorescence Spectrometry Using Empirical Coefficient Method (실험계수법을 이용한 희토류산화물의 X-선 형광분광분석)

  • Young Man Kim;Beom Suk Choi;Sun Tae Kim;Chong Wook Lee
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.64-70
    • /
    • 1987
  • Rare earth elements including Y and Th in the monazite were separated and determined by X-ray fluorescence spectrometry. The matrix effects among the rare earth elements were simultaneously corrected by means of empirical coefficient method. The values of the coefficients were quite dependent on the number of the standards. However, the different set of coefficients led to the same results. The analytical results corrected by the present method agreed with those by the inductively coupled plasma spectrometry.

  • PDF

First Example of Monometallic Palladium(II) Compound with Trans-Chelating Tridentate Ligand: Synthesis, Crystal Structure, and Characterizations

  • Tae Hwan Noh
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.110-115
    • /
    • 2023
  • The reaction of (COD)PdCl2 with new C3-symmetric tridentate L (COD = 1,5-cyclooctadien; L = 1,3,5-tris(picolinoyloxyethyl)cyanurate) in a mixture of acetone and dichloromethane produces single crystals consisting of unprecedented monometallacyclic [PdCl2(L)]. This cyclic compound arises from trans-chelation of two of three donating pyridyl groups of L, while the third pyridyl group remains uncoordinated. Electrospray ionization mass spectrometry (ESI-MS) data on L exhibited the major peak corresponding to [C27H24N6O9 + H+]+. Fast atom bombardment mass spectrometry (FABMS) data on [PdCl2(L)], however, showed the mass peak corresponding to the L instead of the present palladium(II) compound species, due to the insolubility and dissociation in solution. The physicochemical properties of the present palladium(II) compound were fully characterized by means of infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy, thermal analysis, single-crystal X-ray diffraction (SC-XRD) measurement.

Structural and component characterization of the B4C neutron conversion layer deposited by magnetron sputtering

  • Jingtao Zhu;Yang Liu;Jianrong Zhou;Zehua Yang;Hangyu Zhu;Xiaojuan Zhou;Jinhao Tan;Mingqi Cui;Zhijia Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3121-3125
    • /
    • 2023
  • Neutron conversion detectors that use 10B-enriched boron carbide are feasible alternatives to 3He-based detectors. We prepared boron carbide films at micron-scale thickness using direct-current magnetron sputtering. The structural characteristics of natural B4C films, including density, roughness, crystallization, and purity, were analyzed using grazing incidence X-ray reflectivity, X-ray diffraction, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and scanning electron microscopy. A beam profile test was conducted to verify the practicality of the 10B-enriched B4C neutron conversion layer. A clear profile indicated the high quality of the neutron conversion of the boron carbide layer.

Manjang Cave of Twinrock Composition obtained by Fundamen Parameter Method in X-Ray Fluorescence Spectrometry (Fundamental Parameter 법에 의한 만장굴 용암 석주의 형광X선분석)

  • SAWA, ISAO
    • Journal of the Speleological Society of Korea
    • /
    • v.21 no.22
    • /
    • pp.17-56
    • /
    • 1990
  • Cheju Island, which was formed by volcanic activity, is an oval in its shape with the major axis of 80km and the minor axis of 40km. The island holds in its heart Mt. Hanla rising 1,950m above the sea. Petrological study of this volcanic island has been made actively by Sang-Man Lee, Chong-Kwan won and Moon-Won Lee. The chronological measurements of the island by Chong-Kwan Won and Moon-Won Lee showed that it is composed of Sanbangsan trachytes and Backlokdam trachytes(25,000 year ago). These reports are based on the chemical analysis and the rediometric chronological measurements on the ground. However, there has been no reports about the inside of caves. We made an (composition) analysis of the inside of Manjang Cave by the fundamental parameter method in X-ray fluorescence spectrometry. The fundamental parameter method in X-ray fluorescence spectrometry is nondestructive analysis, and it enables us to make the values processed by a computer. The results obtained by this methods are as follows : SiO$_2$(49%), $Al_2$O$_3$(17%), Fe$_2$O$_3$(13%), CaO(8.1%), MgO(5.5%), Na$_2$O(3.6%), TiO$_2$(2.1%), $K_2$O(0.86%), P$_2$O$_{5}$(0.28%), and MnO(0.20%), respectively. The data obtained by the fundamental parameter method in X-ray fluorescence was compared with the data provided by Chong-Kwan and Moon-Won Lee. Our measurement was made by K-Ar-method in cooperation with T.ITAYA. The samples are of 30,000~420,000 year ago. The composition of the values of our underground analysis with the existing values obtained by the analyses on the ground produced new data about Cheju volcanic island.d.

  • PDF

Experimental Evaluation of Scattered X-Ray Spectra due to X-Ray Therapeutic and Diagnosis Equipment for Eye Lens Dosimetry of Medical Staff

  • Kowatari, Munehiko;Nagamoto, Keisuke;Nakagami, Koich;Tanimura, Yoshihiko;Moritake, Takashi;Kunugita, Naoki
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Background: For proper monitoring of the eye lens dose, an appropriate calibration factor of a dosimeter and information about the mean energies of X-rays are indispensable. The scattered X-ray energy spectra should be well characterized in medical practices where eye lenses of medical staffs might be high. Materials and Methods: Scattered X-ray energy spectra were experimentally derived for three different types of X-ray diagnostic and therapeutic equipment, i.e., the computed tomography (CT) scan, the angiography and the fluoroscopy. A commercially available CdZnTe (CZT) spectrometer with a lead collimator was employed for the measurement of scattered X-rays, which was performed in the usual manner. Results and Discussion: From the obtained energy spectra, the mean energies of the scattered X-rays lied between 40 and 60 keV. This also agreed with that obtained by the conventional half value layer method. Conclusion: The scattered X-rays to which medical workers may be exposed in the region around the eyes were characterized by means of spectrometry. The obtained mean energies of the scattered X-rays were found to match the flat region of the dosimeter response.