• Title/Summary/Keyword: X-ray microscopy

Search Result 3,210, Processing Time 0.027 seconds

A Basic Study on the Refractory Material of Kalcheon Iron Making Furnace (갈천리 야철로 내화재료의 기초적 연구)

  • HAN, S. M.;KIM, K. N.;SHIN, D. Y.
    • Journal of Conservation Science
    • /
    • v.2 no.2 s.2
    • /
    • pp.25-30
    • /
    • 1993
  • Materials (refractory, stone) of iron making furnace excavated from Kalcheon were investigated by the scanning electron microscopy(SEM) with an energy dispersive X-ray analysis (EDAX), X-ray fluorescence(XRF), and X-ray diffraction(XRD). Chemical composition of the refractory materials were $SiO_2(68.74\%),\;Al_2O_3(18.40\%),\;CaO(0.42\%),\;MgO(1.04\%)\;and\;K_2O(2.26\%)$ in weight ratio, which were the typical components presented in common clay. The results of chemical analysis for the stone and the glaze coated, alkali ion(K, Na, Ca) components of the glaze contained high concentration than that the stone. It was suggested that this change had a close relationship with the kinds of fuels used.

  • PDF

Effect of a Laser Ablation for Carbon Nitride Film Deposition (고전압 방전 플라즈마에 의한 질화탄소 박막 층착 시 레이저 애블레이션 효과)

  • 김종일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.240-243
    • /
    • 2002
  • Carbon nitride films have been deposited on Si(100) substrate by a high voltage discharge plasma combined with laser ablation in a nitrogen atmosphere. The films were grown both with and without the Presence of an assisting focused Nd:YAG laser ablation. The laser ablation of the graphite target leads to vapor Plume plasma expending into the ambient nitrogen arc discharge area. X-ray photoelectron spectroscopy and Auger electron spectroscopy were used to identify the binding structure and the content of the nitrogen species in the deposited films. The surface morphology of the films was studied using a scanning electron microscopy Data of infrared spectroscopy and x-ray photoelectron spectroscopy indicate the existence of carbon-nitrogen bonds in the films. The x-ray diffraction measurements have also been taken to characterize the crystal properties of the obtain films.

  • PDF

Preparation of Iron Oxide-mixed ZnO films by Ultrasonic Spray Pyrolysis (초음파분무법을 이용한 산화철이 혼합된 ZnO막의 제조)

  • Choi Mu-Hee;Ma Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.58-63
    • /
    • 2006
  • In this Paper, ZnO films mixed with iron oxide were prepared by an ultrasonic spray pyrolysis method. The chemical composition and structural properties as a function of the Fe atomic ratio in the deposition solution were studied. Zinc acetate and ferrous chloride were used as precursors of Zn and Fe, respectively. Fe atomic ratio to Zn varied from 0.15 to 10.0. Substrate temperature was fixed at $250^{\circ}C$. The crystallographic properties and surface morphologies of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Electron probe X-ray microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS) were carried out to analyse the chemical composition and state of Zn and Fe atoms.

Synthesis of Fe-TiB2 Nanocomposite by a combination of mechanical activation and heat treatment

  • Hyunh, Xuan Khoa;Nguyen, Quoc Tuan;Kim, Ji-Sun;Gang, Tae-Hun;Kim, Jin-Cheon;Gwon, Yeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • The TiB2-reinforced iron matrix nanocomposite (Fe-TiB2) was in-situ fabricated from titanium hydride (TiH2) and iron boride (FeB) powders by a simple and cost-effective process that combines the mechanical activation (MA) and a subsequent heat treatment (HT). Effect of milling factors and synthesized temperatures on the formation of the nanocomposite were presented and discussed. A differential thermal analyser (DSC-TG) was employed for examination of thermal behavior of MAed powders. Phases of the nanocomposite were confirmed by X-ray diffraction analysis (XRD). The morphologies and microstructure of nanocomposite were investigated by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Phase composition and distribution were analyzed by electron probe X-ray microanalysis (EPMA). Results showed that TiB2 particles formed in nanoscale were uniformly distributed in alloyed Fe matrix.

  • PDF

The Effect of Aging Conditions on the Crystallization of $Fe_{78} _{13}Si_9$ Metallic Glass (시효 조건에 따른 $Fe_{78} _{13}Si_9$ 비정질 합금의 결정화 연구)

  • 김기욱;민복기;송재성;홍진완;이원재;이상래
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.5-7
    • /
    • 1988
  • Effect of isothermal aging on the crystallization of $Fe_{78}B_{13}Si_{9}$ metallic glass has been investigated by electrical resistivity, X-ray measurements, bending test, thermal analysis and transmission electron microscopy. Amorphous $Fe_{78}B_{13}Si_{9}$ alloy was annealed isothermally for 5 to 1200 mon. between 300 C and 540 C. It has been found that close relation between relative resistivity and X-ray diffraction pattern showed. The crystalline peak of $\alpha$-(Fe, Si) and Fe$_2$B are detected by X-ray experiment. The crystalline phases observed by TEM show $\alpha$-(Fe, Si) and Fe$_3$B with dendritic and cylindrical morphology, respectively. It has been also found that the embrittleness of aged samples rapidly increased with the crystallization and was shown before the crystallization.th the crystallization and was shown before the crystallization.

  • PDF

Effect of thickness on properties of ZnO film prepared by direct current reactive magnetron sputtering method

  • Baek, C.S.;Kim, D.H.;Kim, H.H.;Lim, K.J.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.403-406
    • /
    • 2012
  • Effect of thickness on ZnO properties including the compositional ratio and crystallinity has been systematically investigated using a variety of characterization tools of x-ray diffraction, field emission scanning electron microscopy, x-ray fluorescence and x-ray photoelectron spectroscopy. Interestingly, it was observed that ZnO films below 80 nm in thickness were in oxygen deficiency, while the oxygen ratio was increased in the films above the thickness, although the compositional ratio of ZnO film was not linearly varied with increasing film thickness. Also, ZnO crystallinity, which is characterized by (002) diffraction pattern, was clearly improved with increasing film thickness. The properties of ZnO film with different sputtering time and the nature of direct current reactive sputtering process were discussed in terms of compositional ratio, especially oxygen ratio in ZnO film.

A Study of the Etched ZnO Thin Films Surface by Reactive Ion in the Cl2/BCl3/Ar Plasma (Cl2/BCl3/Ar 플라즈마에서 반응성 이온들에 의해 식각된 ZnO 박막 표면 연구)

  • Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.747-751
    • /
    • 2010
  • In the study, the characteristics of the etched Zinc oxide (ZnO) thin films surface, the etch rate of ZnO thin film in $Cl_2/BCl_3/Ar$ plasma was investigated. The maximum ZnO etch rate of 53 nm/min was obtained for $Cl_2/BCl_3/Ar$=3:16:4 sccm gas mixture. According to the x-ray diffraction (XRD) and atomic force microscopy (AFM), the etched ZnO thin film was investigated to the chemical reaction of the ZnO surface in $Cl_2/BCl_3/Ar$ plasma. The field emission auger electron spectroscopy (FE-AES) analysis showed an elemental analysis from the etched surfaces. According to the etching time, the ZnO thin film of etched was obtained to The AES depth-profile analysis. We used to atomic force microscopy to determine the roughness of the surface. So, the root mean square of ZnO thin film was 17.02 in $Cl_2/BCl_3/Ar$ plasma. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas.

Morphology Development in a Range of Nanometer to Micrometer in Sulfonated Poly(ethylene terephthalate) Ionomer

  • Lee, Chang-Hyung;Inoue, Takashi;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.580-586
    • /
    • 2002
  • We investigated the effect of ionic component on crystalline morphology development during isothermal annealing in a sodium neutralized sulfonated poly(ethylene terephthalate) ionomer (Ion-PET) by time-resolved small-angle x-ray scattering (TR-SAX S) using synchrotron radiation. At early stage in Ion-PET, SAXS intensity at a low annealing temperature (Ta = 120 $^{\circ}C)$ decreased monotonously with scattering angle for a while. Then SAXS profile showed a peak and the peak position progressively moved to wider angles with isothermal annealing time. Finally, the peak intensity decreased, shifting the peak angle to wider angle. It is revealed that ionic aggregates (multiplets structure) of several nm, calculated by Debye-Bueche plot, are formed at early stage. They seem to accelerate the crystallization rate and make fine crystallites without spherulite formation (supported by optical microscopy observation). From decrease of peak intensity in SAXS,it is suggested that new lamellae are inserted between the preformed lamellae so that the concentration of ionic multiplets in amorphous region decreases to lower the electron density difference between lamellar crystal and amorphous region. In addition, analysis on the annealing at a high temperature (Ta = 210 $^{\circ}C)$ by optical microscopy, light scattering and transmission electron microscopy shows a formation of spherulite, no ionic aggregates, the retarded crystallization rate and a high level of lamellar orientation.

Preparation of Y3Al5O12 Nanocrystals by a Glycol Route

  • Bartwal, Kunwar Singh;Kar, Sujan;Kaithwas, Nanda;Deshmukh, Monica;Dave, Mangla;Ryu, Ho-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.151-154
    • /
    • 2007
  • Yttrium aluminum garnet, $Y_3Al_5O_{12}$ (YAG) is an extensively used solid-state laser host material. YAG nanocrystals were synthesized using low-temperature glycol method, a modified sol-gel method performed at low temperature that consists of a mixture of salts that are mostly nitrates in an aqueous media. Single-phase nanocrystalline YAG was obtained at $850^{\circ}C$, which is a much lower temperature than with other techniques such as a wet-chemical technique. The structural characterization is done by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. A crystallite size range of 20-50 nm was observed for the materials prepared at $850-950^{\circ}C$.