• 제목/요약/키워드: X-ray microanalysis

검색결과 74건 처리시간 0.031초

Preparation, Structure, and Photoemission Studies on the High Temperature Superconductor $YBa_2Cu_{3-x}Ni_xO_{7-{\delta}}$

  • Choy, Jin-Ho;Choe, Won-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권5호
    • /
    • pp.379-383
    • /
    • 1990
  • $YBa_2Cu_{3-x}Ni_xO_{7-{\delta}}$, with x = 0.05, 0.2, 0.4, 0.7 and 1.0 had been prepared by the thermal decomposition of corresponding nitrates. Among them, the sample with x = 0.05 shows above-liquid-$N_2$ temperature superconductivity with $T_c$ of 88.7K. According to the X-ray diffraction analysis, its crystal symmetry was estimated as orthorhombic with the lattice parameters of a = 3.866${\AA}$, b = 3.893${\AA}$, c = 11.715${\AA}$. The chemical composition of the sample was determined by electron probe microanalysis and the chemical composition around its grain boundaries was carefully studied by the X-ray line scanning technique. From the observed binding energy of Ni-$2p_{3/2}$ orbital electron (B.E. = 853 eV) measured by X-ray photoelectron spectroscopy, the valency state of nickel stabilized in $YBa_2Cu_{2.95}Ni_{0.05}O_{7-{\delta}}$ oxide lattice could be determined to be Ni(II).

Low-Z Electron Probe X-ray Microanalysis를 이용한 황사 입자의 특성 분석 (Characterization of Asian Dust Using Low-Z Electron Probe X-ray Microanalysis)

  • 황희진;노철언;김혜경
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 추계학술대회 논문집
    • /
    • pp.350-351
    • /
    • 2002
  • 대기 중 부유 입자상물질(에어로졸)은 지구 대기 환경과 기후, 그리고 인체 건강에 영향을 미치는 까닭에, 에어로졸을 효과적으로 분석하는 방법을 개발하는 연구는 매우 중요하다. 특히 한국과 일본에서는 매년 봄 중국에서 발원하여 동북부 아시아로 이동하는 황사(Asian Dust) 현상이 매우 중요한 관심 대상이다. 이것은 황사 입자가 중국의 공업단지인 중국 북동부를 거쳐오면서, 황산염이나 질산염, 해염 입자와 반응하여 한국이나 일본, 태평양으로 이동시킬 수 있다는 점에서 중요하게 여겨진다. (중략)

  • PDF

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Kim, Hye-Kyeong;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권3호
    • /
    • pp.115-140
    • /
    • 2010
  • Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

초음파분무법을 이용한 산화철이 혼합된 ZnO막의 제조 (Preparation of Iron Oxide-mixed ZnO films by Ultrasonic Spray Pyrolysis)

  • 최무희;마대영
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.58-63
    • /
    • 2006
  • In this Paper, ZnO films mixed with iron oxide were prepared by an ultrasonic spray pyrolysis method. The chemical composition and structural properties as a function of the Fe atomic ratio in the deposition solution were studied. Zinc acetate and ferrous chloride were used as precursors of Zn and Fe, respectively. Fe atomic ratio to Zn varied from 0.15 to 10.0. Substrate temperature was fixed at $250^{\circ}C$. The crystallographic properties and surface morphologies of the films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Electron probe X-ray microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS) were carried out to analyse the chemical composition and state of Zn and Fe atoms.

Synthesis of Fe-TiB2 Nanocomposite by a combination of mechanical activation and heat treatment

  • ;;김지순;강태훈;김진천;권영순
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • The TiB2-reinforced iron matrix nanocomposite (Fe-TiB2) was in-situ fabricated from titanium hydride (TiH2) and iron boride (FeB) powders by a simple and cost-effective process that combines the mechanical activation (MA) and a subsequent heat treatment (HT). Effect of milling factors and synthesized temperatures on the formation of the nanocomposite were presented and discussed. A differential thermal analyser (DSC-TG) was employed for examination of thermal behavior of MAed powders. Phases of the nanocomposite were confirmed by X-ray diffraction analysis (XRD). The morphologies and microstructure of nanocomposite were investigated by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Phase composition and distribution were analyzed by electron probe X-ray microanalysis (EPMA). Results showed that TiB2 particles formed in nanoscale were uniformly distributed in alloyed Fe matrix.

  • PDF

Calcium pyrophosphate dihydrate deposition disease in the temporomandibular joint: diagnosis and treatment

  • Kwon, Kwang-Jun;Seok, Hyun;Lee, Jang-Ha;Kim, Min-Keun;Kim, Seong-Gon;Park, Hyung-Ki;Choi, Hang-Moon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.19.1-19.6
    • /
    • 2018
  • Background: Calcium pyrophosphate dihydrate deposition disease (CPDD) is a rare disease in the temporomandibular joint (TMJ) space. It forms a calcified crystal mass and induces a limitation of joint movement. Case presentation: The calcified mass in our case was occupied in the left TMJ area and extended to the infratemporal and middle cranial fossa. For a complete excision of this mass, we performed a vertical ramus osteotomy and resected the mass around the mandibular condyle. The calcified mass in the infratemporal fossa was carefully excised, and the segmented mandible was anatomically repositioned. Scanning electronic microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) microanalysis was performed to evaluate the calcified mass. The result of SEM/EDS showed that the crystal mass was completely composed of calcium pyrophosphate dihydrate. This result strongly suggested that the calcified mass was CPDD in the TMJ area. Conclusions: CPDD in the TMJ is a rare disease and is difficult to differentially diagnose from other neoplasms. A histological examination and quantitative microanalysis are required to confirm the diagnosis. In our patient, CPDD in the TMJ was successfully removed via the extracorporeal approach. SEM/EDS microanalysis was used for the differential diagnosis.

A way Analyzing Oxide Layer on an Irradiated CANDU-PHWR Pressure Tube Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Kim, Hee Moon
    • Corrosion Science and Technology
    • /
    • 제20권3호
    • /
    • pp.118-128
    • /
    • 2021
  • The oxide layer in samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU-PHWR reactor was analyzed using electron probe microanalysis (EPMA). The examined tube had been exposed to temperatures ranging from 264 to 306 ℃ and a neutron fluence of 8.9 × 1021 n/cm2 (E > 1 MeV) for the maximum 10 effective full-power years in a nuclear power plant. Measuring oxide layer thickness generally employs optical microscopy. However, in this study, analysis of the oxide layer from the irradiated pressure tube components was undertaken through X-ray image mapping obtained using EPMA. The oxide layer characteristics were analyzed by X-ray image mapping with 256 × 256 pixels using EPMA. In addition, the slope of the oxide layer was measured for each location. A particular advantage of this study was that backscattered electrons and X-ray image mapping were obtained at a magnification of 9,000 when 20 kV volts and 30 uA of current were applied to radiation-shielded EPMA. The results of this study should usefully contribute to the study of the oxide layer properties of various types of metallic materials irradiated by high radiation in nuclear power plants.

Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium

  • Pathan, Shahin A.;Pandita, Nancy S.
    • Carbon letters
    • /
    • 제20권
    • /
    • pp.10-18
    • /
    • 2016
  • Nanoporous carbon structures were synthesized by pyrolysis of grass as carbon precursor. The synthesized carbon has high surface area and pore volume. The carbon products were acid functionalized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, and Energy Dispersive X-ray microanalysis. Acid functionalized nanoporous carbon was explored for use in removal of toxic Cr(VI) ions from aqueous media. An adsorption study was done as a function of initial concentration, pH, contact time, temperature, and interfering ions. The experimental equilibrium data fits well to Langmuir isotherm model with maximum monolayer adsorption capacity of 35.335 mg/g. The results indicated that removal obeys a pseudo-second-order kinetic model, and that equilibrium was reached in 10 min. A desorption study was done using NaOH. The results of the present study imply that acid functionalized nanoporous carbon synthesized from grass is an efficient, renewable, cost-effective adsorbent material for removal of hexavalent chromium due to its faster removal rate and reusability.

Low-Z Electron Probe X-ray Microanalysis를 이용한 불균일 NaCl-Na$_2$SO$_4$ 입자의 분석 (Characterization of Heterogeneous NaCl-Na$_2$SO$_4$ Particles Using Low-Z Electron Probe X-ray Microanalysis)

  • 구희준;안용훈;김혜경;노철언
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 추계학술대회 논문집
    • /
    • pp.394-395
    • /
    • 2003
  • 대기 중의 황산염 입자는 인체 건강에 좋지 않은 영향을 미칠 뿐 아니라, 지구에 유입되는 빛을 산란시키고 구름을 생성하는 핵으로 작용함으로서 직ㆍ간접적으로 햇빛을 차단하여 전지구적 기후 변화에 상당한 역할을 하는 것으로 알려져 있다. 황산염 입자는 대기 중 SO$_2$의 산화에 의해 주로 생성되는데, 지금까지의 대기 모델을 활용한 연구에 의하면 대기 중의 SO$_2$의 양에 비해 황산염의 양은 과소 평가되고 있다. 이는 대기 중 황산염의 생성에 대한 대기 화학 반응기전이 제대로 파악되지 않아서 global scale의 예측이 불확실하기 때문이다. (중략)

  • PDF