• 제목/요약/키워드: X-ray methods

검색결과 2,170건 처리시간 0.032초

Application of portable digital radiography for dental investigations of ancient Egyptian mummies during archaeological excavations: Evaluation and discussion of the advantages and limitations of different approaches and projections

  • Seiler, Roger;Eppenberger, Patrick;Ruhli, Frank
    • Imaging Science in Dentistry
    • /
    • 제48권3호
    • /
    • pp.167-176
    • /
    • 2018
  • Purpose: In the age of X-ray computed tomography (CT) and digital volume tomography (DVT), with their outstanding post-processing capabilities, indications for planar radiography for the study of the dentition of ancient Egyptian mummies may easily be overlooked. In this article, the advantages and limitations of different approaches and projections are discussed for planar oral and maxillofacial radiography using portable digital X-ray equipment during archaeological excavations. Furthermore, recommendations are provided regarding projections and sample positioning in this context. Materials and Methods: A total of 55 specimens, including 19 skeletonized mandibles, 14 skeletonized skulls, 18 separate mummified heads, and 4 partially preserved mummies were imaged using portable digital X-ray equipment in the course of archaeological excavations led by the University of Basel in the Valley of the Kings between 2009 and 2012. Images were evaluated by 2 authors with regard to the visibility of diagnostically relevant dental structures using a 4-point grading system(Likert scale). Results: Overall, the visibility of diagnostically relevant dental structures was rated highest by both authors on X-ray images acquired using a dental detector. The tube-shift technique in the lateral projections of mandibular dentition achieved the second-best rating, and lateral projections achieved the third-best rating. Conclusion: Conventional planar digital X-ray imaging, due to its ubiquity, remains an excellent method-and often the only practicable one-for examining the skulls and teeth of ancient Egyptian mummies under field conditions. Radiographic images of excellent diagnostic quality can be obtained, if an appropriate methodology regarding the selected projections and sample placement is followed.

시뮬레이션 기법을 이용한 검진센터의 환자관리방안 (Patient Management Through Simulation Modeling in the Medical Center)

  • 임지혜;강성홍;김원중
    • 디지털융복합연구
    • /
    • 제10권4호
    • /
    • pp.287-295
    • /
    • 2012
  • 본 연구는 시뮬레이션 기법을 이용하여 검진센터의 환자 흐름을 효과적으로 관리할 수 있는 방안을 마련하고자 수행되었다. 이를 위해 실제 병원의 검진자료를 활용하여 15개의 검진환자군을 분류하고, 최대 검사시간, 최소 검사시간, X-ray 추가도입에 근거한 3개의 시나리오를 개발하였으며, 시뮬레이션 프로그램은 Flexsim HC 2.7을 이용하였다. 분석결과 최대 검사 소요시간에 근거한 제 1시나리오에서 평균 검사 소요시간과 최대 검사 소요시간의 차이가 가장 크게 나타났으며, 시간대별 환자 수의 증가에 따른 평균 검사 소요시간이 가장 큰 폭으로 증가하였다. X-ray 장비 추가에 따른 평균 검사 소요시간의 차이는 미미한 것으로 나타나 도입의 필요성은 없는 것으로 분석되었다. 시뮬레이션 기법을 이용한 분석을 통하여 환자대기시간 관리, 장비의 효율적인 도입을 위한 의사결정 지원이 가능함을 확인할 수 있었으며, 구체화된 시나리오를 통해 가장 적정한 검사흐름과 시간대별 환자 수를 파악한다면 병원 경영의 효율화에 크게 이바지할 수 있을 것이다.

판형 복합재료의 충격 손상에 대한 비파괴시험적 고찰 (The Study of Nondestructive Test about Impact Damage of Plate Composite Materials)

  • 나성엽;김재훈;최용규;류백능
    • 한국추진공학회지
    • /
    • 제5권4호
    • /
    • pp.20-30
    • /
    • 2001
  • 본 연구는 적층각 및 적층구성이 다른 판형 복합재료의 충격 손상에 대하여 비파괴시험적 관점에서 고찰하였다. 연구를 위하여 직조 및 단일방향 프리프래그로 만든 두가지 형식의 복합재료에 낙하식 충격을 가한 후 비파괴검사를 수행하였다. 비파괴검사는 $ZnI_2$를 침투한 X-ray 검사 그리고 초음파 C-scan 검사를 수행하였고 결함의 종류에 따라 이들 검사에 대한 검출효과를 비교하였다. 그리고 두가지 형식의 복합재료 시험편에 대하여 충격 에너지별 결함의 발생정도를 비교하였다. 시험결과, 결함의 검출효과에 대하여서는 층간 분리 검출은 초음파 검사가 효과적이고 기지 크랙 및 섬유 파단은 침투제를 적용한 X-ray 검사가 효과적이었다. 그리고 적층각 및 적층구성에 따라 결함의 형상 및 발생정도에 상당한 차이가 있었으며, 충격 에너지가 증가할수록 기지 크랙, 층간 분리, 섬유 파단의 순으로 결함이 발생하였고 그 크기도 대체적으로 증가하는 경향을 보였다.

  • PDF

Identification of ginseng root using quantitative X-ray microtomography

  • Ye, Linlin;Xue, Yanling;Wang, Yudan;Qi, Juncheng;Xiao, Tiqiao
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.290-297
    • /
    • 2017
  • Background: The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ, and three-dimensional quantitative imaging properties. Methods: The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. Results: The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. Conclusion: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

흉부 디지털 영상의 병변 유무 판단을 위한 딥러닝 모델 (A Deep Learning Model for Judging Presence or Absence of Lesions in the Chest X-ray Images)

  • 이종근;김선진;곽내정;김동우;안재형
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.212-218
    • /
    • 2020
  • 흉부 영상을 통해 진단 가능한 병변은 무기폐, 심비대, 덩어리, 기흉, 삼출 등 그 종류가 수십 가지에 이른다. 흉부 병변의 정확한 진단과 위치 및 크기를 판단하기 위해 일반적으로 전산화단층촬영(CT) 검사가 필요하지만, 전산화단층촬영은 검사 비용과 방사선 피폭 등의 단점이 있다. 따라서 본 논문에서는 흉부 병변 진단의 일차적 선별도구로서 방사선검사(X-ray) 영상에서 병변 유무 판단을 위한 딥러닝 알고리즘을 제안한다. 제안하는 알고리즘은 병변의 유무 판단에 최적화하기 위해 다양한 구성 방법들을 비교하여 설계하였다. 실험 결과, 기존 알고리즘보다 병변 유무 판단률이 약 1% 정도 향상되었다.

X-ray tomography 분석과 기계 학습을 활용한 금속 3D 프린팅 소재 내의 기공 형태 분류 (Characterization and Classification of Pores in Metal 3D Printing Materials with X-ray Tomography and Machine Learning)

  • 김은아;권세훈;양동열;유지훈;김권일;이학성
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.208-215
    • /
    • 2021
  • Metal three-dimensional (3D) printing is an important emerging processing method in powder metallurgy. There are many successful applications of additive manufacturing. However, processing parameters such as laser power and scan speed must be manually optimized despite the development of artificial intelligence. Automatic calibration using information in an additive manufacturing database is desirable. In this study, 15 commercial pure titanium samples are processed under different conditions, and the 3D pore structures are characterized by X-ray tomography. These samples are easily classified into three categories, unmelted, well melted, or overmelted, depending on the laser energy density. Using more than 10,000 projected images for each category, convolutional neural networks are applied, and almost perfect classification of these samples is obtained. This result demonstrates that machine learning methods based on X-ray tomography can be helpful to automatically identify more suitable processing parameters.

X-Ray Diffraction Analysis of Various Calcium Silicate-Based Materials

  • An, So-Youn;Lee, Myung-Jin;Shim, Youn-Soo
    • 치위생과학회지
    • /
    • 제22권3호
    • /
    • pp.191-198
    • /
    • 2022
  • Background: The purpose of this study was to evaluate the composition of the crystal phases of various calcium silicate-based materials (CSMs): ProRoot white MTA (mineral trioxide aggregate) (WMTA), Ortho MTA (OM), Endocem MTA (EM), Retro MTA (RM), Endocem Zr (EN-Z), BiodentineTM (BD), EZ-sealTM (EZ), and OrthoMTA III (OM3). Methods: In a sample holder, 5 g of the powder sample was placed and the top surface of the material was packed flat using a sterilized glass slide. The prepared slides were mounted on an X-ray diffraction (XRD) instrument (D8 Advance; Bruker AXS GmbH, Germany). The X-ray beam 2θ angle range was set at 10~90° and scanned at 1.2° per minute. The Cu X-ray source set to operate at 40 kV and 40 mA in the continuous mode. The peaks in the diffraction pattern of each sample were analyzed using the software Diffrac (version 2.1). Then, the peaks were compared and matched with those of standard materials in the corresponding Powder Diffraction File (PDF-2, JCPDS International Center for Diffraction Data). A powder samples of the materials were analyzed using XRD and the peaks in diffraction pattern were compared to the Powder Diffraction File data. Results: Eight CSMs showed a similar diffraction pattern because their main component was calcium silicate. Eight CSMs showed similar diffraction peaks because calcium silicate was their main component. Two components were observed to have been added as radiopacifiers: bismuth oxide was detected in WMTA, OM, and EM while zirconium oxide was detected in RM, EN-Z, BD, EZ, and OM3. Unusual patterns were detected for the new material, OM3, which had strong peaks at low angles. Conclusion: It was caused by the presence of Brushite, which is believed to have resulted in crystal growth in a particular direction for a specific purpose.

추나치료에 적용된 골반변위 진단법에 대한 체계적 문헌고찰 (Systematic Review of the Diagnosis of Pelvic Deviation for Chuna Manual Therapy)

  • 이준석;박경원;김현태;박선영;신병철
    • 한방재활의학과학회지
    • /
    • 제32권2호
    • /
    • pp.83-94
    • /
    • 2022
  • Objectives This systematic review aimed to analyze research about pelvic deviation diagnosis for Chuna manual therapy (CMT) and to review the diagnosis methods, indices, and results of diagnosis. Methods Ten electronic databases were systematically searched up to January 4th 2022. Clinical studies and reviews containing pelvic deviation diagnosis for CMT or using CMT as a treatment of pelvic deviation were selected and evaluated. CMT diagnosis in clinical studies and reviews were isolated and analyzed by 2 independent reviewers. Results Thirteen clinical studies and three reviews were included in the evaluation. X-ray analysis and manual testing were the two main methods used in CMT diagnosis of pelvic deviation. For manual testing in clinical studies, leg length insufficiency testing was the most frequently used measurement index and the most common diagnostic results were anterior and posterior rotation. In the X-ray analysis, Obturator foramen and femur head line were the most frequently used measurement index and the most common diagnostic results were anterior rotation and posterior rotation. Conclusions The systematic review found that manual testing and X-ray analysis were mainly used for the diagnosis of pelvic deviation in CMT among clincial and review articles. As there was little research about diagnosing pelvic deviation in CMT and any existing research presented only low standards of evidence, further research should be updated with using a more standardized approach.

일반엑스선영상검사의 인자에 따른 산란방사선량 평가 및 분석 (Evaluation and Analysis of Scattered Radiation Dose according to Factors in General X-ray Examination)

  • 정동경;박명환;서정민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제47권1호
    • /
    • pp.13-19
    • /
    • 2024
  • Control of scattered radiation is one of very important factors in the use of medical radiation. In general X-ray exam, the causes, measurement methods, and the kind of detectors of scattered rays within the radiation area are diverse. In this study, the dose of scattered ray was measured by changing the thickness of the polycarbonate phantom and the tube voltage. As a result of measurement of scattered radiation, the results show that the scattered dose significantly(p<.05) increased with growing of thickness of phantom in the tube voltage 40, 50 and 60 kVp(F(p)<.05, R2>64%). As tube voltage increased at all phantom thicknesses, the scattered dose also significantly(p<.05) increased(F(p)<.05, R2>69%). In cases where a significant correlation was shown, the coefficient of determination of more than 60% was shown in regression analysis. The results of this study can be used as data on scattered radiation dose according to the tube voltage and the object thickness in general X-ray imaging exam.

기계적 후면 손상이 레이저/극초단파 광전도 기법에 의한 소수 반송자 재결합 수명 측정에 미치는 영향 (Effect of mechanical backside damage upon minority carrier recombination lifetime measurement by laser/microwave photoconductance technique)

  • 조상희;최치영;조기현
    • 한국결정성장학회지
    • /
    • 제5권4호
    • /
    • pp.408-413
    • /
    • 1995
  • 초크랄스키 실리콘 기판의 뒷면에 형성된 기계적 손상이 레이저 여기/극초단파 반사 광전도 감쇠법에 의한 소수반송자 재결합 수명 측정에 미치는 영향을 고찰하였다. 기계적손상의 정도는 X-선 이중결정 회절법과 X-선 단면 측정법 및 습식산화/선택적 식각 방법으로 평가하였다. 그 결과, 웨이퍼 뒷면에 가해지는 기계적 손상의 세기가 강할수록 소수반송자 재결합 수명은 짧아지고, 소수반송자 재결합 수명 측정에 영향을 미치는 반치전폭의 임계값은 약13초임을 알 수 있다.

  • PDF