• Title/Summary/Keyword: X-ray method

Search Result 4,389, Processing Time 0.029 seconds

Analysis of Continuum X-ray Specturum and Determination of Electron Temperature from Iodine Photodissociation Laser produced plasma (집속된 광분해 옥소레이저에 의한 플라즈마로부터 방출되는 연속 X-선 스펙트럼 분석과 전자온도 결정)

  • 김동환;김남성;이상수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1988.06a
    • /
    • pp.135-144
    • /
    • 1988
  • 1-GW Iodine photodissociation Laser (λ=1.315${\mu}{\textrm}{m}$)is focused to generate the continuum x-ray radiation at titanium(z=22)target. A piced of aluminum(360 )-mylar(8${\mu}{\textrm}{m}$) film is used to isolate the soft X-ray radiation emitted. Convex-xurved mica crystal spectrometer is used to obtain the soft x-ray spectra from the laser titanium target plasma and the slope of continum X-ray spectra are found to show two different different electron effective temperaturres, 0.11keV and 7.1KeV. We compare the two temperature result with the foil absorption method.

  • PDF

An Effective Extraction Algorithm of Pulmonary Regions Using Intensity-level Maps in Chest X-ray Images (흉부 X-ray 영상에서의 명암 레벨지도를 이용한 효과적인 폐 영역 추출 알고리즘)

  • Jang, Geun-Ho;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Deok-Hwan;Lim, Myung-Kwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1062-1075
    • /
    • 2010
  • In the medical image application the difference of intensity is widely used for the image segmentation and feature extraction, and a well known method is the threshold technique that determines a threshold value and generates a binary image based on the threshold. A frequently-used threshold technique is the Otsu algorithm that provides efficient processing and effective selection criterion for choosing the threshold value. However, we cannot get good segmentation results by applying the Otsu algorithm to chest X-ray images. It is because there are various organic structures around lung regions such as ribs and blood vessels, causing unclear distribution of intensity levels. To overcome the ambiguity, we propose in this paper an effective algorithm to extract pulmonary regions that utilizes the Otsu algorithm after removing the background of an X-ray image, constructs intensity-level maps, and uses them for segmenting the X-ray image. To verify the effectiveness of our method, we compared it with the existing 1-dimensional and 2-dimensional Otsu algorithms, and also the results by expert's naked eyes. The experimental result showed that our method achieved the more accurate extraction of pulmonary regions compared to the Otsu methods and showed the similar result as the naked eye's one.

A Method for Sinogram Interpolation for Reducing X-ray Dose (CT의 선량 감소를 위한 sinogram 보간 기법)

  • Kim, Jae-Min;Lee, Ki-Seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.601-609
    • /
    • 2012
  • In this paper, a limited-view CT image reconstruction method was studied to reduce the scan times and the X-ray dose for the patients. To reduce streak artifacts which is caused by insufficient number of views, we introduce a sinogram interpolation method based on image matching. Image matching is achieved using the characteristics of the neighboring views including intensity, gradient and distance between the pixels. Interpolation is performed using the image matching results.. A numerical phantom and Al-acryl phantom were used for evaluating the effectiveness of the proposed interpolation method. The results showed that streak artifacts were reduced in the reconstructed images while the details of the images were preserved. Moreover, maximum 5% improvements in terms of PSNR were observed.

Study of The Amorphous Selenium (a-Se) using 2-dimensional Device Simulator (2차원 소자 시뮬레이터를 이용한 비정질 셀레늄(a-Se) 분석)

  • Kim, Si-Hyoung;Kim, Chang-Man;Nam, Ki-Chang;Kim, Sang-Hee;Song, Kwang-Soup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.187-193
    • /
    • 2012
  • Digital X-ray image detector has been applied for medical and industrial fields. Photoconductors have been used to convert the X-ray energy to electrical signal on the direct digital X-ray image detector and amorphous selenium (a-Se) has been used as a photoconductor, normally. In this work, we use 2-dimensional device (2-D) simulator to study about physical phenomena in the a-Se, when we irradiate electromagnetic radiation (${\lambda}=486nm$) on the a-Se surface. We evaluate the electron-hole generation rate, electron-hole recombination rate, and electron/hole distribution in the a-Se using 2-D simulator. This simulator divides the device into triangle and calculates using interpolation method. This simulation method has been proposed for the first time and we expect that it will be applied for the development of digital X-ray image detector.

Dynamically Collimated CT Scan and Image Reconstruction of Convex Region-of-Interest (동적 시준을 이용한 CT 촬영과 볼록한 관심영역의 영상재구성)

  • Jin, Seung Oh;Kwon, Oh-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.151-159
    • /
    • 2014
  • Computed tomography (CT) is one of the most widely used medical imaging modality. However, substantial x-ray dose exposed to the human subject during the CT scan is a great concern. Region-of-interest (ROI) CT is considered to be a possible solution for its potential to reduce the x-ray dose to the human subject. In most of ROI-CT scans, the ROI is set to a circular shape whose diameter is often considerably smaller than the full field-of-view (FOV). However, an arbitrarily shaped ROI is very desirable to reduce the x-ray dose more than the circularly shaped ROI can do. We propose a new method to make a non-circular convex-shaped ROI along with the image reconstruction method. To make a ROI with an arbitrary convex shape, dynamic collimations are necessary to minimize the x-ray dose at each angle of view. In addition to the dynamic collimation, we get the ROI projection data with slightly lower sampling rate in the view direction to further reduce the x-ray dose. We reconstruct images from the ROI projection data in the compressed sensing (CS) framework assisted by the exterior projection data acquired from the pilot scan to set the ROI. To validate the proposed method, we used the experimental micro-CT projection data after truncating them to simulate the dynamic collimation. The reconstructed ROI images showed little errors as compared to the images reconstructed from the full-FOV scan data as well as little artifacts inside the ROI. We expect the proposed method can significantly reduce the x-ray dose in CT scans if the dynamic collimation is realized in real CT machines.

Feasibility of Single-Shot Dual-Energy X-ray Imaging Technique for Printed-Circuit Board Inspection (인쇄회로기판 검사를 위한 단일조사 이중에너지 엑스선 영상기법의 유용성에 관한 연구)

  • Kim, Seung Ho;Kim, Dong Woon;Kim, Daecheon;Kim, Junwoo;Park, Ji Woong;Park, Eunpyeong;Kim, Jinwoo;Kim, Ho Kyung
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 2015
  • A single-shot dual-energy x-ray imaging technique has been developed using a sandwich detector by stacking two detectors, in which the front and rear detectors respectively produce relatively lower and higher x-ray energy images. Each detector layer is composed of a phosphor screen coupled with a photodiode array. The front detector layer employs a thinner phosphor screen, whereas the rear detector layer employs a thicker phosphor screen considering the quantum efficiency for x-ray photons with higher energies. We have applied the proposed method into the inspection of printed circuit boards, and obtained dual-energy images with background clutter suppressed. In addition, the single-shot dual-energy method provides sharper-edge images than the conventional radiography because of the unsharp masking effect resulting from the use of different thickness phosphors between the two detector layers. It is promising to use the single-shot dual-energy x-ray imaging for high-resolution nondestructive testing. For the reliable use of the developed method, however, more quantitative analysis is further required in comparisons with the conventional method for various types of printed circuit boards.

Computer Simulation for X-ray Breast Elastography (X선 유방 탄성 영상을 위한 컴퓨터 모의 실험)

  • Kim, Hyo-Geun;Aowlad Hossain, A.B.M.;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.158-164
    • /
    • 2011
  • Breast cancer is the most frequently appearing cancer in women, these days. To reduce mortality of breast cancer, periodic check-up is strongly recommended. X-ray mammography is one of powerful diagnostic imaging systems to detect 50~100 um micro-calcification which is the early sign of breast cancer. Although x-ray mammography has very high spatial resolution, it is not easy yet to distinguish cancerous tissue from normal tissues in mammograms and new tissue characterizing methods are required. Recently ultrasound elastography technique has been developed, which uses the phenomenon that cancerous tissue is harder than normal tissues. However its spatial resolution is not enough to detect breast cancer. In order to develop a new elastography system with high resolution we are developing x-ray elasticity imaging technique. It uses the small differences of tissue positions with and without external breast compression and requires an algorithm to detect tissue displacement. In this paper, computer simulation is done for preliminary study of x-ray elasticity imaging. First, 3D x-ray breast phantom for modeling woman's breast is created and its elastic model for FEM (finite element method) is generated. After then, FEM experiment is performed under the compression of the breast phantom. Using the obtained displacement data, 3D x-ray phantom is deformed and the final mammogram under the compression is generated. The simulation result shows the feasibility of x-ray elasticity imaging. We think that this preliminary study is helpful for developing and verifying a new algorithm of x-ray elasticity imaging.

Evaluation Method of Rock Characteristics using X-ray CT images (X-ray CT 이미지를 이용한 암석의 특성 평가 방안)

  • Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.542-557
    • /
    • 2019
  • The behavior of rock mass is influenced by its microscopic feature of internal structure generating from forming and metamorphic process. This study investigated a new methodology for characterization of rock based on the X-ray CT (computed tomography) images reflecting the spatial distribution characteristics of internal constituent materials. The X-ray image based analysis is capable of quantification of heterogeneity and anisotropy of rock fabric, size distribution and shape parameter analysis of rock mineral grains, fluid flow simulation based on pore geometry image and roughness evaluation of unexposed joint surface which are hardly acquired by conventional rock testing methods.

3D Lithography using X-ray Exposure Devices Integrated with Electrostatic and Electrothermal Actuators

  • Lee, Kwang-Cheol;Lee, Seung S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.259-267
    • /
    • 2002
  • We present a novel 3D fabrication method with single X-ray process utilizing an X-ray mask in which a micro-actuator is integrated. An X-ray absorber is electroplated on the shuttle mass driven by the integrated micro-actuator during deep X-ray exposures. 3D microstructures are revealed by development kinetics and modulated in-depth dose distribution in resist, usually PMMA. Fabrication of X-ray masks with integrated electrothermal xy-stage and electrostatic actuator is presented along with discussions on PMMA development characteristics. Both devices use $20-\mu\textrm{m}$-thick overhanging single crystal Si as a structural material and fabricated using deep reactive ion etching of silicon-on-insulator wafer, phosphorous diffusion, gold electroplating, and bulk micromachining process. In electrostatic devices, $10-\mu\textrm{m}-thick$ gold absorber on $1mm{\times}1mm$ Si shuttle mass is supported by $10-\mu\textrm{m}-wide$, 1-mm-long suspension beams and oscillated by comb electrodes during X-ray exposures. In electrothermal devices, gold absorber on 1.42 mm diameter shuttle mass is oscillated in x and y directions sequentially by thermal expansion caused by joule heating of the corresponding bent beam actuators. The fundamental frequency and amplitude of the electrostatic devices are around 3.6 kHz and $20\mu\textrm{m}$, respectively, for a dc bias of 100 V and an ac bias of 20 VP-P (peak-peak). Displacements in x and y directions of the electrothermal devices are both around $20{\;}\mu\textrm{m}$at 742 mW input power. S-shaped and conical shaped PMMA microstructures are demonstrated through X-ray experiments with the fabricated devices.

High Pressure X-Ray Diffraction Study on a Goethite using Synchrotron Radiation (방사광을 이용한 괴타이트에 대한 고압 X-선 회절연구)

  • 김영호;이지은
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.75-81
    • /
    • 1997
  • High pressure X-ray diffraction study was carried out on a natural FeO(OH)-goethite to investigate its compressibility at room temperature. Energy dispersive X-ray diffraction method was employed using Mao-Bell type diamond anvil cell with Synchrotron Radiation. MgO powder was compressed together with goethite for the high pressure determinations. Bulk modullus was determined to be 147.9 GPa by the Birch-Murnaghan equation of state under assumption of K0' of 4. This value was subjected to compare with its structural analogs and related materials.

  • PDF