DOI QR코드

DOI QR Code

Evaluation Method of Rock Characteristics using X-ray CT images

X-ray CT 이미지를 이용한 암석의 특성 평가 방안

  • Kim, Kwang Yeom (Department of Energy & Resources Engineering, Korea Maritime & Ocean University) ;
  • Yun, Tae Sup (School of Civil and Environmental Engineering, Yonsei University)
  • 김광염 (한국해양대학교 해양과학기술대학 에너지자원공학과) ;
  • 윤태섭 (연세대학교 공과대학 토목환경공학과)
  • Received : 2019.12.17
  • Accepted : 2019.12.24
  • Published : 2019.12.31

Abstract

The behavior of rock mass is influenced by its microscopic feature of internal structure generating from forming and metamorphic process. This study investigated a new methodology for characterization of rock based on the X-ray CT (computed tomography) images reflecting the spatial distribution characteristics of internal constituent materials. The X-ray image based analysis is capable of quantification of heterogeneity and anisotropy of rock fabric, size distribution and shape parameter analysis of rock mineral grains, fluid flow simulation based on pore geometry image and roughness evaluation of unexposed joint surface which are hardly acquired by conventional rock testing methods.

암석의 성인과 변성에 따른 내부구조의 마이크로 특성은 암반의 거동 특성에 영향을 미친다. 본 연구에서는 암석 내부의 구성물질의 분포 특성을 반영하는 엑스레이 단층(X-ray CT) 이미지에 기초한 새로운 암석특성의 평가방안을 고찰하였다. 암석의 불균질 특성 및 이방성 특성의 정량화, 암석의 구성광물 입자의 크기분포 및 형상특성, 공극이미지를 이용한 유동해석, 암석내부의 노출되지 않은 절리면 거칠기 평가 등 전통적인 암석의 시험법으로 측정하기 어려웠던 중요한 암석의 특성들이 X-ray CT 이미지의 분석을 통하여 평가될 수 있다.

Keywords

References

  1. Al-Menhali, A., Niu, B., Krevor, S., 2015, Capillarity and wetting of carbon dioxide and brine during drainage in Berea sandstone at reservoir conditions, Water Resources Research, 51, pp. 7895-7914. https://doi.org/10.1002/2015WR016947
  2. Andrew, M., Bijeljic,B., Blunt, M.J., 2013, Pore-scale imaging of geological carbon dioxide storage under in situ conditions, Geophysical Research Letters, 40, pp. 3915-3918. https://doi.org/10.1002/grl.50771
  3. Blunt, M.J., 2001, Flow in porous media-pore-network models and multiphase flow, Current opinion in colloid & interface science, 6, pp. 197-207. https://doi.org/10.1016/S1359-0294(01)00084-X
  4. Brace, W.F., 1965, Some new measurements of linear compressibility of rocks, J. Geophys. Res., 70, pp. 391-398 https://doi.org/10.1029/JZ070i002p00391
  5. Cnudde, V., Boone, M.N., Dewanckele, J., Dierick, M., Hoorebeke, V., Jacobs, P., 2011, 3D characterization of sandstone by means of X-ray CT., Geosphere, 7, pp. 1-8. https://doi.org/10.1130/GES00652.1
  6. Dann, R., Turner, M., Close, M., Knackstedt, M., 2011, Multi-scale characterisation of coastal sand aquifer media for contaminant transport using X-ray computed tomography, Environmental Earth Science, 63, pp. 1125-1137. https://doi.org/10.1007/s12665-010-0788-8
  7. Diaz, K., Kim, K.Y., Yeom, S., Zhuang, L., Park, S., Min, K-B., 2017, Surface roughness characterization of open and closed rock joints in deep cores using X-ray computed tomography, International Journal of Rock Mechanics & Mining Sciences, 98, pp. 10-19. https://doi.org/10.1016/j.ijrmms.2017.07.001
  8. Fujii, Y., Takemura, T., Takahashi, M., Lin, W., 2007, Surface features of uniaxial tensile fractures and their relation to rock anisotropy in Inada granite, Int. J. Rock Mech. Min. Sci., 44, pp. 98-107 https://doi.org/10.1016/j.ijrmms.2006.05.001
  9. Gouze, P., Noiriel, C., Bruderer, C., Loggia, D., Leprovost, R., 2003, X-ray tomography characterization of fracture surfaces during dissolution, Geophysical Research Letters, 30(5), 1267.
  10. Gueguen, Y., Schubnel, A., 2003, Elastic wave velocities and permeability of cracked rocks, Tectonophysics, 370, pp. 163-176 https://doi.org/10.1016/S0040-1951(03)00184-7
  11. Hirono, T., Takahashi, M., Nakashima, S., 2003, In situ visualization of fluid flow image within deformed rock by X-ray CT, Engineering Geology, 70, pp. 37-46. https://doi.org/10.1016/S0013-7952(03)00074-7
  12. Joekar-Niasar, V., Hassanizadeh, S.M., 2012, Analysis of Fundamentals of Two-Phase Flow in Porous Media using Dynamic Pore-Network Models: A Review, Critical Reviews in Environmental Science and Technology, 42, pp. 1895-1976. https://doi.org/10.1080/10643389.2011.574101
  13. Jung, Y.J., Yun, T.S., Kim, K.Y., Choo. J., 2011, Image Calibration Techniques for Removing Cupping and Ring Artifacts in X-ray Micro-CT Images, Journal of the Korean geotechnical society, 27(11), pp. 93-101. https://doi.org/10.7843/kgs.2011.27.11.093
  14. Kawakata, H., Cho, A., Kiyama, T., Yanagidani, T., Kusunose, K., Shimada, M., 1999, Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan, Tectonophysics, 313, pp. 293-305. https://doi.org/10.1016/S0040-1951(99)00205-X
  15. Kemmerer, J.P., Oelze, M.L., 2012, Ultrasonic assessment of thermal therapy in rat liver, Ultrasound Med. Biol., 38, pp. pp. 2130-2137 https://doi.org/10.1016/j.ultrasmedbio.2012.07.024
  16. Kim K.Y., Zhuang, L., Yang, H., Kim, H., Min, K-B., 2016, Strength Anisotropy of Berea Sandstone: Results of X-Ray Computed Tomography, Compression Tests, and Discrete Modeling, Rock Mech Rock Eng, 49. pp. 1201-1210. https://doi.org/10.1007/s00603-015-0820-0
  17. Kim, G., In, C.-W., Kim, J.-Y., Kurtis, K.E., Jacobs, L.J., 2014, Air-coupled detection of nonlinear Rayleigh surface waves in concrete-Application to microcracking detection, Ndt E Int., 67, pp. 64-70 https://doi.org/10.1016/j.ndteint.2014.07.004
  18. Kim, K.Y, Suh, H.S., Yun, T.S., Moon, S.-W., Seo, Y.S., 2016, Effect of particle shape on the shear strength of fault gouge, Geosciences Journal, 20(3), pp. 351-359 https://doi.org/10.1007/s12303-015-0051-0
  19. Lai, P., Moulton, K., Krevor, S., 2015, Pore-scale heterogeneity in the mineral distribution and reactive surface area of porous rocks., Chemical Geology, 411, pp. 260-273. https://doi.org/10.1016/j.chemgeo.2015.07.010
  20. Lee, S.-E., Cho, S.-H., Seo, Y.-S., Yang, H.-S., Park, H.-M., 2001, The effect of microcracks on the mechanical anisotropy of granite, J. Soc. Mater. Sci., 50, pp. 7-13
  21. Lenormand, R., Zarcone, C., Sarr, A., 1983, Mechanisms of the displacement of one fluid by another in network of capillary ducts, Journal of Fluid Mechanics, 135, pp. 337-353. https://doi.org/10.1017/S0022112083003110
  22. Li, J., Liu, J., Trefry, M.G., Liu, K., Park, J., Haq, B., Johnston, C.D., Clennell, M.B., Volk, H., 2012, Impact of Rock Heterogeneity on Interactions of Microbial-Enhanced Oil Recovery Processes., Trasport in Porous Media, 92, pp. 373-396. https://doi.org/10.1007/s11242-011-9908-5
  23. Lo, T.-W., Coyner, K.B., Toksoz, M.N., 1986, Experimental determination of elastic anisotropy of Berea sandstone, Chicopee shale, and Chelmsford granite, Geophysics, 51, pp. 164-171 https://doi.org/10.1190/1.1442029
  24. Martinez-Martinez, J., Fusi, N., Galiana-Merino, J.J., Benavente, D., Crosta, G.B., 2016, Ultrasonic and X-ray computed tomography characterization of progressive fracture damage in low-porous carbonate rocks, Engineering Geology, 200, pp. 47-57. https://doi.org/10.1016/j.enggeo.2015.11.009
  25. Oelze, M.L., O'Brien, W.D., Darmody, R.G., 2002, Measurement of attenuation and speed of sound in soils, Soil Sci. Soc. Am. J., 66, pp. 788-796 https://doi.org/10.2136/sssaj2002.7880
  26. Pini, R., Krevor, S.C.M., Benson, S.M., 2012, Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions, Advances in Water Resources, 38, pp. 48-59. https://doi.org/10.1016/j.advwatres.2011.12.007
  27. Sayers, C., 1988, Stress-induced ultrasonic wave velocity anisotropy in fractured rock, Ultrasonics, 26, pp. 311-317 https://doi.org/10.1016/0041-624X(88)90028-5
  28. Semnani, S.J., Borja, R.I., 2017, Quantifying the heterogeneity of shale through statistical combination of imaging across scales, Acta Geotechnica, DOI 10.1007/s11440-017-0576-7.
  29. Suh, H.S., 2017, Estimation of water retention characteristics of geomaterials by pore network simulation, M.S. thesis, Yonsei University.
  30. Suh, H.S., Kang, D.H., Jang, J., Kim, K.Y., Yun, T.S., 2017, Capillary pressure at irregularly shaped pore throats: Implications for water retention characteristics, Advances in Water Resources, doi: 10.1016/j.advwatres.2017.09.025.
  31. Suh, H.S., Yun, T.S., 2017, Modification of capillary pressure by considering pore throat geometry with the effects of particle shape and packing features on water retention curves for uniformly graded sands, Computers and Geotechnics, doi: 10.1016/j.compgeo.2017.10.007.
  32. Suh, H.S., Yun, T.S., Kim, K.Y., 2016, Prediction of Soil-Water Characteristic Curve and Relative Permeability of Jumunjin Sand Using Pore Network Model, Journal of the Korean geotechnical society, 32(1), pp. 55-62. https://doi.org/10.7843/kgs.2016.32.1.55
  33. Takemura, T., Golshani, A., Oda, M., Suzuki, K., 2003, Preferred orientations of open microcracks in granite and their relation with anisotropic elasticity, Int. J. Rock Mech. Min. Sci., 40, pp. 443-454 https://doi.org/10.1016/S1365-1609(03)00014-5
  34. Torquato, S,, Beasley, J.D., Chlew, Y.C., 1988, Two-point cluster function for continuum percolation, J. Chem. Phys., 88(10), pp. 6540-6547. https://doi.org/10.1063/1.454440
  35. Yang, S-Q., Ju, Y., Gao, F., Gui, Y-L., 2016, Strength, Deformability and X-ray Micro-CT Observations of Deeply Buried Marble Under Different Confining Pressures, Rock Mech Rock Eng, 49, pp. 4227-4244. https://doi.org/10.1007/s00603-016-1040-y
  36. Yun, T.S., Jeong, Y.J., Kim, K.Y., Min, K-B., 2013, Evaluation of rock anisotropy using 3D X-ray Computed Tomography, Engineering Geology, 163, pp. 11-19. https://doi.org/10.1016/j.enggeo.2013.05.017