• Title/Summary/Keyword: X-ray fluorescence spectrometry

Search Result 56, Processing Time 0.025 seconds

Surface Coating Treatment of Phosphor Powder Using Atmospheric Pressure Dielectric Barrier Discharge Plasma (대기압 유전체배리어방전 플라즈마를 이용한 형광체 분말 코팅)

  • Jang, Doo Il;Ihm, Tae Heon;Trinh, Quang Hung;Jo, Jin Oh;Mok, Young Sun;Lee, Sang Baek;Ramos, Henry J.
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.455-462
    • /
    • 2014
  • This work investigated the hydrophobic coating of silicate yellow phosphor powder in the form of divalent europium-activated strontium orthosilicate ($Sr_2SiO_4:Eu^{2+}$) by using an atmospheric pressure dielectric barrier discharge (DBD) plasma with argon as a carrier and hexamethyldisiloxane (HMDSO), toluene and n-hexane as precursors. After the plasma treatment of the phosphor powder, the lattice structure of orthosilicate was not altered, as confirmed by an X-ray diffractometer. The coated phosphor powder was characterized by scanning electron microscopy, fluorescence spectrophotometry and contact angle analysis (CAA). The CAA of the phosphor powder coated with the HMDSO precursor revealed that the water contact angle increased from $21.3^{\circ}$ to $139.5^{\circ}$ (max. $148.7^{\circ}$) and the glycerol contact angle from $55^{\circ}$ to $143.5^{\circ}$ (max. $145.3^{\circ}$) as a result of the hydrophobic coating, which indicated that hydrophobic layers were successfully formed on the phosphor powder surfaces. Further surface characterizations were performed by Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry, which also evidenced the formation of hydrophobic coating layers. The phosphor coated with HMDSO exhibited a photoluminescence (PL) enhancement, but the use of toluene or n-hexane somewhat decreased the PL intensity. The results of this work suggest that the DBD plasma may be a viable method for the preparation of hydrophobic coating layer on phosphor powder.

Study on the screening method for determination of heavy metals in cellular phone for the restrictions on the use of certain hazardous substances (RoHS) (유해물질 규제법(RoHS)에 따른 휴대폰 내의 중금속 함유량 측정을 위한 스크리닝법 연구)

  • Kim, Y.H.;Lee, J.S.;Lim, H.B.
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • It is of importance that all countries in worldwide, including EU and China, have adopted the Restrictions on the use of certain Hazardous Substances (RoHS) for all electronics. IEC62321 document, which was published by the International Electronics Committee (IEC) can have conflicts with the standards in the market. On the contrary Publicly Accessible Specification (PAS) for sampling published by IEC TC111 can be adopted for complementary application. In this work, we tried to find a route to disassemble and disjoint cellular phone sample, based on PAS and compare the screening methods available in the market. For this work, the cellular phone produced in 2001, before the regulation was born, was chosen for better detection. Although X-ray Fluorescence (XRF) showed excellent performance for screening, fast and easy handling, it can give information on the surface, not the bulk, and have some limitations due to significant matrix interference and lack of variety of standards for quantification. It means that screening with XRF sometimes requires supplementary tool. There are several techniques available in the market of analytical instruments. Laser ablation (LA) ICP-MS, energy dispersive (ED) XRF and scanning electron microscope (SEM)-energy dispersive X-ray (EDX) were demonstrated for screening a cellular phone. For quantitative determination, graphite furnace atomic absorption spectrometry (GF-AAS) was employed. Experimental results for Pb in a battery showed large difference in analytical results in between XRF and GF-AAS, i.e., 0.92% and 5.67%, respectively. In addition, the standard deviation of XRF was extremely large in the range of 23-168%, compared with that in the range of 1.9-92.3% for LA-ICP-MS. In conclusion, GF-AAS was required for quantitative analysis although EDX was used for screening. In this work, it was proved that LA-ICP-MS can be used as a screening method for fast analysis to determine hazardous elements in electrical products.

A Study on the Replacement of a Light Burnt Dolomite with a Waste MgO-C Refractory Material for a Steel-Making Flux in Electric Arc Furnace (폐 MgO-C계 내화재의 전기로(EAF) 제강 Flux용 경소돌로마이트 대체 사용 연구)

  • Hyun-Jong Kim;Jong-Deok Lim;Hang-Goo Kim;Jei-Pil Wang
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.44-51
    • /
    • 2022
  • In the steelmaking process using an electric arc furnace (EAF), light-burnt dolomite, which is a flux containing MgO, is used to protect refractory materials and improve desulfurization ability. Furthermore, a recarburizing agent is added to reduce energy consumption via slag foaming and to induce the deoxidation effect. Herein, a waste MgO-C based refractory material was used to achieve the aforementioned effects economically. The waste MgO-C refractory materials contain a significant amount of MgO and graphite components; however, most of these materials are currently discarded instead of being recycled. The mass recycling of waste MgO-C refractory materials would be achievable if their applicability as a flux for steelmaking is proven. Therefore, experiments were performed using a target composition range similar to the commercial EAF slag composition. A pre-melted base slag was prepared by mixing SiO2, Al2O3, and FeO in an alumina crucible and heating at 1450℃ for 1 h or more. Subsequently, a mixed flux #2 (a mixture of light-burnt dolomite, waste MgO-C based refractory material, and limestone) was added to the prepared pre-melted base slag and a melting reaction test was performed. Injecting the pre-melted base slag with the flux facilitates the formation of the target EAF slag. These results were compared with that of mixed flux #1 (a mixture of light-burnt dolomite and limestone), which is a conventional steelmaking flux, and the possibility of replacement was evaluated. To obtain a reliable evaluation, characterization techniques like X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) spectrometry were used, and slag foam height, slag basicity, and Fe recovery were calculated.

Adsorptive Removal of Radionuclide Cs+ in Water using Acid Active Clay (산활성 점토를 이용한 수중의 방사성 핵종 Cs+ 흡착 제거)

  • Lee, Jae Sung;Kim, Su Jin;Kim, Ye Eun;Kim, Seong Yun;Kim, Eun;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • Natural white clay was treated with 6 M of H2SO4 and heated at 80℃ for 6 h under mechanical stirring and the resulting acid active clay was used as an adsorbent for the removal of Cs+ in water. The physicochemical changes of natural white clay and acid active clay were observed by X-ray Fluorescence Spectrometry (XRF), BET Surface Area Analyser and Energy Dispersive X-line Spectrometer (EDX). While activating natural white clay with acid, the part of Al2O3, CaO, MgO, SO3 and Fe2O3 was dissolved firstly from the crystal lattice, which bring about the increase in the specific surface area and the pore volume as well as active sites. The specific surface area and the pore volume of acid active clay were roughly twice as high compared with natural white clay. The adsorption of Cs+ on acid active clay was increased rapidly within 1 min and reached equilibrium at 60 min. At 25 mg L- of Cs+ concentration, 96.88% of adsorption capacity was accomplished by acid active clay. The adsorption data of Cs+ were fitted to the adsorption isotherm and kinetic models. It was found that Langmuir isotherm was described well to the adsorption behavior of Cs+ on acid active clay rather than Freundlich isotherm. For adsorption Cs+ on acid active clay, the Langmuir isotherm coefficients, Q, was found to be 10.52 mg g-1. In acid active clay/water system, the pseudo-second-order kinetic model was more suitable for adsorption of Cs+ than the pseudo-first-order kinetic model owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal. The overall results of study showed that acid active clay could be used as an efficient adsorbent for the removal of Cs+ from water.

Study on Adsorption of PO43--P in Water using Activated Clay (활성 백토를 이용한 수중의 인산성 인(PO43--P) 흡착에 관한 연구)

  • Hwang, Ji Young;Jin, Ye Ji;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.197-202
    • /
    • 2021
  • In this study, activated clay treated with H2SO4 (20% by weight) and heat at 90 ℃ for 8 h for acid white soil was used as an adsorbent for the removal of PO43--P in water. Prior to the adsorption experiment, the characteristics of activated clay was examined by X-ray Fluorescence Spectrometry (XRF) and BET surface area analyser. The adsorption of PO43--P on activated clay was steeply increased within 0.25 h and reached equilibrium at 4 h. At 5 mg/L of low PO43--P concentration, roughly 98% of adsorption efficiency was accomplished by activated clay. The adsorption data of PO43--P were introduced to the adsorption isotherm and kinetic models. It was seen that both Freundlich and Langmuir isotherms were applied well to describe the adsorption behavior of PO43--P on activated clay. For adsorption PO43--P on activated clay, the Freundlich and Langmuir isotherm coefficients, KF and Q, were found to be 8.3 and 20.0 mg/g, respectively. The pseudo-second-order kinetics model was more suitable for adsorption of PO43--P in water/activated clay system owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal than the pseudo-first-order kinetics model. The results of study indicate that activated clay could be used as an efficient adsorbent for the removal of PO43-P from water.

Effect of RGD peptide coating of implant titanium surface on human mesenchymal stem cell response (양극산화 티타늄 표면에 서로 다른 RGD 펩타이드 코팅 방법이 인간간엽줄기세포 반응에 미치는 영향)

  • Kim, Min-Su;Jeong, Chang-Mo;Jeon, Young-Chan;Ryu, Jae-Jun;Huh, Jung-Bo;Yun, Mi-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.245-253
    • /
    • 2011
  • Purpose: The aim of this in vitro study was to estimate surface characteristic after peptide coating and investigate biological response of human mesenchymal stem cell to anodized titanium discs coated with RGD peptide by physical adhesion and chemical fixation. Materials and methods: Fluorescence isothiocyanate (FITC) modified RGD-peptide was coated on the anodized titanium discs (diameter 12 mm, height 3 mm) using two methods. One was physical adhesion method and the other was chemical fixation method. Physical adhesion was performed by dip and dry procedure, chemical fixation was performed by covalent bond via silanization. In this study, human mesenchymal stem cell was used for experiments. The experiments consisted of surface characteristic evaluation after peptide coating, analysis about cell adhesion, proliferation, differentiation, and mineralization. Obtained data are statistically treated using Kruskal-Wallis test and Bonferroni test was performed as post hoc test (P=.05). Results: The evaluation of FE-SEM images revealed no diffenrence at micro-surfaces between each groups. Total coating dose was higher at physical adhesion experimental group than at chemical fixation experimental group. In cell adhesion and proliferation, RGD peptide coating did not show a statistical significance compared with control group (P>.05). In cell differentiation and mineralization, physical adhesion method displayed significantly increased levels compared with control group and chemical fixation method (P<.05). Conclusion: RGD peptide coating seems to enhance osseointegration by effects on the response of human mesenchymal stem cell. Especially physical adhesion method showed more effective than chemical fixation method on response of human mesenchymal stem cell.