• Title/Summary/Keyword: X-ray field

Search Result 1,740, Processing Time 0.033 seconds

Detection of Flip-chip Bonding Error Through Edge Size Extraction of X-ray Image (X선 영상의 에지 추출을 통한 플립칩 솔더범프의 접합 형상 오차 검출)

  • Song, Chun-Sam;Cho, Sung-Man;Kim, Joon-Hyun;Kim, Joo-Hyun;Kim, Min-young;Kim, Jong-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.916-921
    • /
    • 2009
  • The technology to inspect and measure an inner structure of micro parts has become an important tool in the semi-conductor industrial field with the development of automation and precision manufacturing. Especially, the inspection skill on the inside of highly integrated electronic device becomes a key role in detecting defects of a completely assembled product. X-ray inspection technology has been focused as a main method to inspect the inside structure. However, there has been insufficient research done on the customized inspection technology for the flip-chip assembly due to the interior connecting part of flip chip which connects the die and PCB electrically through balls positioned on the die. In this study, therefore, it is implemented to detect shape error of flip chip bonding without damaging chips using an x-ray inspection system. At this time, it is able to monitor the solder bump shape by introducing an edge-extracting algorithm (exponential approximation function) according to the attenuating characteristic and detect shape error compared with CAD data. Additionally, the bonding error of solder bumps is automatically detectable by acquiring numerical size information at the extracted solder bump edges.

Structural Determination of cis- and trans-5-Hydroxymethyl-5-methyl-2-thiono-r-2-ethoxy-1,3,2-dioxaphosphorinane by NMR and X-ray Crystallography: Model Compounds for the Reaction Mechanism Study of Organophosphorus Pesticides

  • Kim, Jeong Han;Toia, Robert F.;Craig, Donald C.
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.37-43
    • /
    • 2000
  • 1,3,2-Dioxaphosphorinanes are suitable compounds for studying the stereochemistry of substitution at phosphorus. Cis- and trans-5-hydroxymethl-5-methyl-2-thiono-2ethoxy-1,3,2-dioxaphosphorinane were prepared, and their structures and stereochemistry unambiguously assigned by NMR and X-ray crystallography with acetoxy and 3,5-dinitrobenzoyloxy derivatives, respectively. Trans isomer gave $^{31}P$ NMR signal at higher field than cis isomer, and the ring proton Spectrum of cis isomer showed characteristic pattern for identifying its geometry. In X-ray crystallography they adopted a chair conformation with the ethoxy groups in the axial positions, and the sulfide groups in the equatorial positions. A flattening of the ring around the phosphorus center was noted, the POC bond angles were about $120^{\circ}$, and the C-O bonds in the ring were significantly longer than the C-O bond for the ethoxy group or the C-O bond for hydroxyl group.

  • PDF

The Effects of Total Variation (TV) Technique for Noise Reduction in Radio-Magnetic X-ray Image: Quantitative Study

  • Seo, Kanghyen;Kim, Seung Hun;Kang, Seong Hyeon;Park, Jongwoon;Lee, Chang Lae;Lee, Youngjin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.593-598
    • /
    • 2016
  • In order to reduce the amount of noise component in X-ray imaging system, various reduction techniques were frequently used in the field of diagnostic imaging. Although the previous techniques -such as median, Wiener filters and Anscombe noise reduction technique - were able to reduce the noise, the edge information was still damaged. In order to cope with this problem, total variation (TV) noise reduction technique has been developed and researched. The purpose of this study was to evaluate and compare the image quality using normalized noise power spectrum (NNPS) and contrast-to-noise ratio (CNR) through simulations and experiments with respect to the above-mentioned noise reduction techniques. As a result, not only lowest NNPS value but also highest CNR values were acquired using a TV noise reduction technique. In conclusion, the results demonstrated that TV noise reduction technique is proved as the most practical method to ensure accurate denoising in X-ray imaging system.

A Study of Tissue-equivalent Compensator for 10MV X-ray and Co-60 Gamma-ray (고에너지 방사선치료용 조직등가보상체에 관한 고찰)

  • CHOI Tae Jin;HONG Young Rak;LIM Charn Soo;JEUNG Ho Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.1 no.1
    • /
    • pp.47-51
    • /
    • 1985
  • Authors describe some useful data when constructing tissue-equivalent compensators which would compensate tissue deficit in the treatment field of high energy electromagnetic radiation Tissue equivalent compensator is made of lucite. The ratio of compensator thickness to the thickness of tissue deficit depends on radiation energy, field size and the distance from the compensator to patient skin. When the compensator is separated from skin surface, the thickness ratio is always smaller than 1.0. This means that the larger the separation, the contribution to the total dose by means of scattered radiation from a tissue equivalent compensator is smaller. Authors propose that the thickness of lucite as tissue equivalent compensator is 0.57 times tissue deficit and the separation between compensator and skin is at least 15m for Co-60 gamma ray and 25cm for 10MV X-ray.

  • PDF

Nationwise Survey of the X-ray Beam Collimator Utilization in General Diagnostic Radiograph (진단방사선 일반촬영에서의 X-ray Beam Collimator 사용 전국 실태조사)

  • Kim, Jee Hye;Sung, Dong-Wook;Kim, Jeong Wook;Shin, Jin Ho;Lee, Soon Keun;Jung, Kyung Il;Uhm, Jong Kwan;Lee, Ki Nam;Seong, Ho Jin;Kim, Youn Hyun;Kim, Hyeog Ju
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2013
  • Due to the introduction of CR and DR, it has been neglected the use of the X-ray beam collimator and field size. This study examines nationwide survey of the proper use of collimator and field size by area in a specific field of plain radiography and the current status. Authors emphasized the need for the field size criteria, and propose a standard reference field size in each specific radiologic examination. Total 333 medical institutions (included in Seoul, Gyeonggi-do, Jeolla, Chungcheong, Gangwon-do, Busan area), were investigated in relation to the status of the X-ray beam collimation field size, type specific inspection areas, medical facilities, and image analyses by type to figure out whether they use the adjustment of image field to the specific examination. To assess the awareness and the impact of radiation exposure to the collimation adjustable, 168 radiographers who was working in 10 general hospitals, 10 hospitals, and 10 clinics, were surveyed how they haver adjusted the actual field size. We examine that 61.3% of medical institutions used the "Proper collimation" and only 49.9% of them employed proper one in lumbar spine densely crowded by major organs. 69% among general hospitals, and 65% among hospitals using DR system were using proper collimation. Radiographers recognized that proper adjustment of collimation could reduce the harmful radiation dose on patients. In the survey, 97.6% of respondents were aware of this fact, but only 83.3% of respondents did the adjustment of the size of the collimation field. The using of proper collimation field was low in the nationwide survey, so the effort to reduce the radiation dose on the patients is urgently needed. A unified standard for the field accompanied by thorough education should be needed.

X-ray properties measurement of Flat panel Digital X-ray gas detector (평판형 디지털 엑스레이 가스 검출기의 엑스선 특성 측정기술에 관한 연구)

  • Yoon, Min-Seok;Cho, Sung-Ho;Oh, Kyung-Min;Jung, Suk-Hee;Nam, Sang-Hee;Park, Ji-Goon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • The Recently, large area matrix-addressed image detectors are investigated for X-ray imaging with medical diagnostic and other applications. In this paper, a new flat panel gas detector for diagnostic X-ray imaging is proposed, and its characteristics are investigated. The research of flat panel gas detector is not exist at all. Because of difficulty to inject gas against to atmospheric pressure. So almost gas detector made by chamber shape. We made flat panel sample by display technique. (ex: PDP, Fed, etc.) The experimental measurements, the transparent electrodes, dielectric layer, and the MgO protection layer were formed in front glass. And, the X-ray phosphor layer and address electrodes are formed in the rare glass. The dark current, the x-ray sensitivity and linearity as a function of electric field were measured to investigate the electrical properties. From the results, the stabilized dark current density and the significant x-ray sensitivity were obtained. And the good linearity as a function of exposure dose was showed in wide diagnostic energy range. These results means that the passive matrix-addressed flat panel gas detector can be used for digital x-ray imaging.

  • PDF

Correlation between composition and structure of PtxNiy alloy nanodendrites

  • Lee, Young-Woo;Kwak, Da-Hee;Park, Kyung-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.165-170
    • /
    • 2016
  • We have synthesized $Pt_xNi_y$ alloy nanodendrites by a thermal decomposition method. The structure and composition of the as-prepared samples were characterized by field-emission transmission electron microscopy (FE-TEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray diffraction (XRD). The growth mode of the $Pt_xNi_y$ alloy samples synthesized as a function of an intended atomic fraction of Ni was likely to be strongly affected by and reduction (or oxidation) potentials and surface energy.

Quality Assurance System for Determination of Center Position in X-ray and Proton Irradiation Fields using a Stainless Ball and Imaging Plates in Proton Therapy at PMRC

  • Yasuoka, Kiyoshi;Ishikawa, Satoko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.189-191
    • /
    • 2002
  • In the proton therapy using a gantry system, periodical verification of iso-center position is very important to assure precision of patient positioning system at any gantry angles in proton treatment. In the gantry system, there are three different types of iso-center; 1) in a geometrical view, 2) in an X-ray beam's eye view, 3) in a proton beam's eye view. Idealistically, they would be an identical point. They could, however, be different points. It may be a source of errors in patient positioning. At PMRC, we have established a system of verification for iso-center positions using a stainless ball of 2-cm in diameter and an imaging plate. This system provides the relation among a center of a patient target position, a center of proton irradiation field, and/or a center of X-ray field in accuracy of 50$\square$m in the 2) and 3) views, as images of a center of the stainless ball and a center of a 100 mm${\times}$100 mm-aperture brass collimator recorded on the imaging plate, which is setup at 1-cm behind the ball. In addition, it provides simultaneously the images of the ball and the collimator on an imaging intensifier (II), which is setup downstream of the proton or X-ray beam. We present a method of quality assurance (QA) for calibration of iso-center position in a rotation gantry system at PMRC and the performance of this system. A proton beam position on the 1$\^$st/ scatterer in the nozzle of the gantry affects less sensitive (reduced by a factor of 1/5) to the results of the iso-center position. The effect is systematically correctable. The effect of the nozzle (or the collimator) position is less than 0.5 mm at the maximum extraction (390 mm).

  • PDF

Effect of electrolyte composition on Cu thin film by electroplating (전해액 조성이 전기도금으로 제작된 구리박막의 특성에 미치는 영향)

  • Song, Yoo-Jin;Seo, Jung-Hye;Lee, Youn-Seoung;Yeom, Kee-Soo;Ryu, Young-Ho;Hong, Ki-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.95-99
    • /
    • 2008
  • Cu has been used for metallic interconnects in ULSI applications because of its lower resistivity according to the scaling down of semiconductor devices. The resistivity of Cu lines will affect the RC delay and will limit signal propagation in integrated circuits. We investigated the electrolyte effects of the electroplating solution in the resistivity value of Cu films grown by electroplating deposition (EPD). The resistivity was measured with a four-point probe and the material properties were investigated with XRD (X-ray Diffraction), AFM (Atomic Force Microscope), FE-SEM (Field Emission Scanning Electron Microscope) and XPS (X-ray Photoelectron Spectroscopy). From these experimental results, we found that the electrolyte condition plays an Important role in formation of Cu film with lower resistivity by EPD.

  • PDF

Study of Image Properties for Computed Radiography (Computed Radiography의 영상특성에 관한 연구)

  • Ryu, Ki-Hyun;Jung, Jae-Eun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.2
    • /
    • pp.23-31
    • /
    • 2008
  • Computed radiography(CR) has been widely used in the field of diagnostic radiography since digital X-ray image was introduced. The imaging performance of CR system was studied by analyzing the digital image data of the CR images which are the outcomes of the whole imaging system composed of image plate(IP), laser digitizer, analoge-digital convertor, and a given image processing unit. In this study, we used a conventional CR system made by Agfa. From the flat field image of 150$\times$150 image pixels, signal-to-noise ratio(SNR) was calculated. SNR of the CR image increases in proportion to logarithm value of the X-ray exposure irradiated on the IP. SNR is less than about 6 at the exposure below 0.2mR and is more than 10 at the exposure above 0.54mR. In our study, most of images obtained by the smaller exposures less than 2.0mR can not be readable. In general, the minimum value of the SNR ranges from 3 to 5. We obtained modulation transfer function(MTF) by analyzing the bar pattern image which was made under conditions as follows: X-ray tube potential was 55kVp, the IP exposure was 0.54 mR, and the distance between X-ray source to IP was 2m, where bar pattern was located on the IP. MTF is 23% at 2.5lp/mm spatial frequency. Provided that the MTF of noise equivalent modulation is 10%, the CR system has the limiting spatial resolution of 3.2lp/mm. If the image sharpness is evaluated by the spatial frequency where MTF is 50%. the corresponding spatial frequency is 0.5$\sim$0.75lp/mm. MTFA(Modulation Transfer Function Area) is 1.0lp/mm. Compared with the Fuji CR whose MTFA is 1.1lp/mm, Agfa CR in this study shows almost same MTFA performance.

  • PDF