Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2016.26.5.165

Correlation between composition and structure of PtxNiy alloy nanodendrites  

Lee, Young-Woo (Department of Engineering Science, University of Oxford)
Kwak, Da-Hee (Department of Chemical Engineering, Soongsil University)
Park, Kyung-Won (Department of Chemical Engineering, Soongsil University)
Abstract
We have synthesized $Pt_xNi_y$ alloy nanodendrites by a thermal decomposition method. The structure and composition of the as-prepared samples were characterized by field-emission transmission electron microscopy (FE-TEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray diffraction (XRD). The growth mode of the $Pt_xNi_y$ alloy samples synthesized as a function of an intended atomic fraction of Ni was likely to be strongly affected by and reduction (or oxidation) potentials and surface energy.
Keywords
PtNi; Alloy; Nanodendrite; Composition; Structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I.-T. Kim, H.-K. Lee and J. Shim, "Synthesis and characterization of Pt-Pd catalysts for methanol oxidation and oxygen reduction", J. Nanosci. Nanotech. 8 (2008) 5302.   DOI
2 S.-W. Xie, S. Chen, Z.-Q. Liu and C.-W. Xu, "Comparison of alcohol electrooxidation on Pt and Pd electrodes in alkaline medium", Int. J. Electrochem. Sci. 6 (2011) 882.
3 S. Lj. Gojkovic, T.R. Vidakovic and D.R. Durovic, "Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalysts", Electrochim. Acta 48 (2003) 3607.   DOI
4 J.M.S. Ayub, R.F.B. De Souza, J.C.M. Silva, R.M. Piasentin, E.V. Spinace, M.C. Santos and A.O. Neto, "Ethanol electro-oxidation on PtSn/C-ATO electrocatalysts", Int. J. Electrochem. Sci. 7 (2012) 11351.
5 M.D. Obradovic and S. Lj. Gojkovic, "Electrochemical instability of Pt nanoparticles probed by formic acid oxidation", J. Electroanal. Chem. 664 (2012) 152.   DOI
6 Y.W. Lee, M. Kim and S.W. Han, "Shaping Pd nanocatalysts through the control of reaction sequence", Chem. Commun. 46 (2010) 1535.   DOI
7 Y. Kang, X. Ye and C.B. Murray, "Size- and shapeselective synthesis of metal nanocrystals and nanowires using CO as a reducing agent", Angew. Chem. Int. Ed. 49 (2010) 6156.   DOI
8 Y.-W. Lee, A-R. Ko, S.-B. Han, H.-S. Kim, D.-Y. Kim, S.-J. Kim and K.-W. Park, "Cuboctahedral Pd nanoparticles on WC for enhanced methanol electrooxidation in alkaline solution", Chem. Commun. 46 (2010) 9241.   DOI
9 Y.-W. Lee, A-R. Ko, S.-B. Han, H.-S. Kim and K.-W. Park, "Synthesis of octahedral Pt-Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation", Phys. Chem. Chem. Phys. 13 (2011)5569.   DOI
10 Y.-W. Lee, S.-B. Han, A-R. Ko, H.-S. Kim and K.-W. Park, "Glycerol-mediated synthesis of Pd nanostructures with dominant {111} facets for enhanced electrocatalytic activity", Catal. Commun. 15 (2011) 137.   DOI
11 D. Seo and H. Song, "Asymmetric hollow nanorod formation through a partial galvanic replacement reaction", J. Am. Chem. Soc. 131 (2009) 18210.   DOI
12 L. Wang and Y. Yamauchi, "Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell", J. Am. Chem. Soc. 132 (2010) 13636.   DOI
13 Z. Chen, M. Waje, W. Li and Y. Yan, "Supportless Pt and PtPd nanotubes as electrocatalysts for oxygenreduction reactions", Angew. Chem. Int. Ed. 46 (2007) 4060.   DOI
14 L. Wang and Y. Yamaumchi, "Block copolymer mediated synthesis of dendritic platinum nanoparticles", J. Am. Chem. Soc. 131 (2009) 9152.   DOI
15 A. Mohanty, N. Garg and R. Jin, "A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties", Angew. Chem. Int. Ed. 49 (2010) 4962.   DOI
16 B. Lim, M. Jiang, T. Yu, P.H.C. Camargo and Y. Xia, "Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties", Nano Res. 3 (2010) 69.   DOI
17 L. Wang, Y. Nemoto and Y. Yamamuchi, "Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity", J. Am. Chem. Soc. 131 (2011) 9674.
18 Z. Peng and H. Yang, "Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd baimetallic heteronanostructures", J. Am. Chem. Soc. 131 (2009) 7542.   DOI
19 B. Lim, M. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X. Lu and Y. Xia, "Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction", Science 324 (2009) 1302.   DOI
20 N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding and Z. L. Wang, "Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity", Science 316 (2007) 732.   DOI
21 S.-I. Choi, R. Choi, S.W. Han and J.T. Park, "Synthesis and characterization of $Pt_9Co$ nanocubes with high activity for oxygen reduction", Chem. Commun. 46 (2010) 4950.   DOI
22 Q. Zhang, J. Xie, J. Liang and J.Y. Lee, "Synthesis of monodisperse Ag-Au alloy nanoparticles with independently tunable morphology, composition, size, and surface chemistry and their 3-D superlattices", Adv. Funct. Mater. 19 (2009) 1387.   DOI
23 Y. Bing, H. Liu, L. Zhang, D. Ghosh and J. Zhang, "Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction", Chem. Soc. Rev. 39 (2010) 2184.   DOI
24 H. Lee, S.E. Habas, S. Kweskin, D. Butcher, G.A. Somorjai and P. Yang, "Morphological control of catalytically active platinum nanocrystals", Angew. Chem. Int. Ed. 45 (2006) 7824.   DOI
25 Y.-W. Lee, J.-K. Oh, H.-S. Kim, J.-K. Lee, S.-B. Han, W. Choi and K.-W. Park, "Shape-controlled Pd nanostructure catalysts for highly efficient electrochemical power sources", J. Power Sources 195 (2010) 5896.   DOI
26 M. Subhramannia and V.K. Pillai, "Shape-dependent electrocatalytic activity of platinum nanostructures", J. Mater. Chem. 18 (2008) 5858.   DOI
27 Y.-W. Lee, S.-B. Han, D.-Y. Kim and K.-W. Park, "Monodispersed platinum nanocubes for enhanced electrocatalytic properties in alcohol electrooxidation", Chem. Commun. 47 (2011) 6296.   DOI