• Title/Summary/Keyword: X-ray diffraction test

Search Result 470, Processing Time 0.032 seconds

Analysis of the Cause of Defects in Asphalt Pavement Using Steel Slag as Auxiliary Base Material (보조기층재로 제강슬래그가 사용된 아스팔트 포장면 불량 원인 분석)

  • Jang, Jeong-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.546-553
    • /
    • 2022
  • This research has focused on identifying a significant cause of the pavement cracks and irregularities of roads in Changwon city which have been constructed using steel slag, an auxiliary-based material. It is important to note that the cracks and irregularities yield logistics inconvenience, the risk of traffic accidents, and increased road maintenance costs. X-ray diffraction analysis tests have been conducted in this study on the sample collected by pavement cutting and excavating the three target roads. It is well known that the primary cause of the expansion of steelmaking slag is the hydration reaction between CaO and MaO. While the reaction of CaO is completed within a few months, that of MgO is pretty slow depending on the firing temperature. The test results reveal that the MgO content of the testing samples is approximately 47% of the total average, and that of CaO is around 14% of the total average. Hence, these results make it possible to be understood that the expansion induced by the slow hydration reaction of MgO results in road uplift in the long term, resulting in the cracks and irregularities of roads.

Compressive Strength and Water Contact Angle Properties of Cement Mortar by Type of Water Repellent (발수제종류별 잔골재 입도에 따른 시멘트 모르타르의 강도 및 발수특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Sang-Jin;Suh, Jeong-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.529-538
    • /
    • 2021
  • In this study, the compressive strength and water contact angle were measured before and after surface abrasion of mortar specimens prepared by mixing two types of water repellents and two types of sands. In addition, the hydration products and chemical bonding of cement mortar by repellent were examined using X-ray diffraction(XRD), thermogravimetry-differential thermal analysis(TG-DTA), and Fourier-transform infrared spectroscopy(FT-IR) to evaluate the performance of these cement mortar mixtures as repair materials. We found that the compressive strength of the cement mortar with water repellent added was decreased compared to that of the plain cement mortar, and that of the oligomeric system was higher than that of the monomeric system. We further found that the contact angle of mortar with water repellent added was increased compared to that of the plain cement mortar, and that of the oligomeric system was increased compared to that of the monomer.

Synthesis and Electrochemical Properties of Carbon Coated Mo6S8 using PVC (PVC를 원료로 탄소코팅한 Mo6S8의 합성 및 전기화학적 특성)

  • Si-Cheol Hyun;Byung-Won Cho;Byung-Ki Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.348-355
    • /
    • 2023
  • Magnesium secondary batteries are attracting much attention due to their potential to replace conventionally used lithium ion batteries. Magnesium secondary battery cathode material Mo6S8 were synthesized by molten salt synthesis method and PVC as a carbon materials were added to improve electrochemical properties. Crystal structure, size and surface of the synthesized anode materials were measured through XRD and SEM. Charge-discharge profiles and rate capabilities were measured by battery test system. 2.81 wt% PVC coated sample showed the best rate capabilities of 85.8 mAh/g at 0.125 C-rate, 69.2 mAh/g at 0.5 C-rate, and 60.5 mAh/g at 1 C-rate.

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Adsorption of Arsenate on the Synthesized Layered Double Hydroxide Materials (층상이중 수산화물을 이용한 5가 비소 흡착 특성)

  • Choi, Young-Mu;Choi, Won-Ho;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.91-96
    • /
    • 2009
  • Layered double hydroxide is synthesized and used in the arsenate adsorption experiments. The shapes of two materials analyzed by TEM showed that unheated material is amorphous in shape, micro-sized while heat treated material showed more crystallized in shape and nano-sized. X-ray diffraction showed this result more obvious. $N_2$ adsorption-desorption results showed that the materials are mesoporous and the specific surface area of the heated material is more than two times larger than the unheated material. Adsorption of As(V) is expected to be more in the heated material than the unheated material. Kinetic test of arsenate adsorption showed very fast reaction. The reactivity of Fe with As(V) might be the main factor for this result. The reaction kinetic of the heated and the unheated materials were similar and even the adsorption isotherms showed similar results for both materials. Both materials are found to be useful in remediation of soil and groundwater polluted by waste mine tailings consist of high concentration of As(V).

Synthesis of Nano Sulfur/Chitosan-Copper Complex and Its Nematicidal Effect against Meloidogyne incognita In Vitro and on Coffee Pots

  • Hong Nhung Nguyen;Phuoc Tho Tran;Nghiem Anh Tuan Le;Quoc Hien Nguyen;Duy Du Bui
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.261-271
    • /
    • 2024
  • Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium. The obtained SNPs/CS-Cu2+ complex consisting of 0.32% S, 4% CS, and 0.7% Cu (w/v), contained SNPs with an average size of ~28 nm as measured by transmission electron microscopy images. The X-ray diffraction pattern of the SNPs/CS-Cu2+ complex showed that SNPs had orthorhombic crystal structures. Interaction between SNPs and the CS-Cu2+ complex was also investigated by ultraviolet-visible. Results in vitro nematicidal effect of materials against Meloidogyne incognita showed that SNPs/CS-Cu2+ complex was more effective in killing second-stage juveniles (J2) nematodes and inhibiting egg hatching than that of CS and CS-Cu2+ complex. The values of LC50 in killing J2 nematodes and EC50 in inhibiting egg hatching of SNPs/CS-Cu2+ complex were 75 and 51 mg/l, respectively. These values were lower than those of CS and the CS-Cu2+ complex. The test results on the nematicidal effect against M. incognita on coffee pots showed that the SNPs/CS-Cu2+ complex was 100% effective at a concentration of 150 mg/l. Therefore, the SNPs/CS-Cu2+ complex could be considered as a biochemical material with potential for agricultural applications to control root-knot nematodes.

Novel Synthesis of MnO2-SiC Fiber-TiO2 Ternary Composite and Effective Photocatalytic Degradation with Standard Dyes

  • Latiful Kabir;Yeon Woo Choi;Yun Seo Shin;Yeon Ji Shin;Geun Chan Kim;Jun Hyeok Choi;Jo Eun Kim;Young Jun Joo;Kwang Youn Cho;Hyuk Kim;Je-Woo Cha;Won-Chun Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.275-282
    • /
    • 2024
  • In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.

A Study on High Temperature properties of Kaolin-Phosphate-Water Systems (카올린-인산염-물계의 고온특성에 관한 연구)

  • 박금길;장영재
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.229-236
    • /
    • 1981
  • This study deals with the high temperature (600-135$0^{\circ}C$) properties of Kaolin-Phosphate-Water systems. Phosphoric acid, mono aluminum phosphate, mono ammonium phosphate, the mixture of phosphoric acid and mono aluminum phosphate, and the mixture of phosphoric acid and mono ammonium phosphate were used to characterize the M.O.R of the systems with to quantity of phosphates and firing temperature. Firing shrinkage, creeptest, DTA, TGA, and X-ray diffraction patterns were also measured in order to investigate the factors of strengthening. The resules of the experiments are as follows: 1. Linear shrinkage of kaolin-phosphate systems become larger as the firing temperature rise, and generally in the firing temperature of $600^{\circ}C$ and 100$0^{\circ}C$ the test pieces with phosphate binder show larger then Kaolin-Water system in linear shrinkage and reversed trends were found at 120$0^{\circ}C$ and 135$0^{\circ}C$. 2. Cold M.O.R. of kaolin-phosphate systems show higher trends in strength as the firing temperature rise. Comparing M.O.R. of test pieces after firing at 135$0^{\circ}C$, the mixture of phosphoric acid-mono aluminum phosphate, and phosphoric acid mono ammonium phosphate systems show higher strength than kaolin-mono aluminum phosphate system which widely used, and it shows highest strength when the mole ratio of phosphoric acid and mono ammonium phosphate is 1:1 among the test pieces of kaolin-phosphate systems. 3. The refractoriness of kaolin-phosphate systems are more deteriorated than Kaolin-Water system, and generally, the more addition of phosphate, the lower the refractoriness, however in the range of 4-8% phosphate addition, the difference of the fusion temperature is about 7$0^{\circ}C$. 4. The test pieces of T1 and T2 in creep test were same or even higher than kaolin-water system when 6% of phosphoric acid-mono ammonium phosphate was added to kaolin. 5. In case where the phosphoric acid-mono ammonium phosphate was added to kaolin in mole ratio 1:1 the cold M.O.R., after firing at 135$0^{\circ}C$, refractoriness and $T_2$ in creep test show better results than kaolin-mono-aluminum phosphate system which is widely used. 6. Phosphoric acid and mono ammonium phosphate react with kaolin in temperature over 100$0^{\circ}C$, and it forms aluminum phosphate.

  • PDF

Study on Analysis for Factors Inducing the Whangryeong Mountain Landslide (황령산 산사태 원인 분석에 대한 연구)

  • 최정찬;백인성
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.137-150
    • /
    • 2002
  • Recently, plane failure mode occurred frequently along the bedding plane having low angle dip about 20 degree when cutting slopes were constructed in sedimentary rock region of the Gyeongsang Basin. Landslide of the Whangryeong Mountain which was occurred at Busan Metropolitan City in 1999 belongs to the category mentioned above. Reconstruction for cutting slope of the Whangryeong Mountain has finished in 2000 and final grade of reconstructed cutting slope is 1:2.0. To analyze slope failure mode for landslide of the Whangryeong Mountain, various analyses were performed such as in-situ investigation and test, drilling, laboratory test, aerial photograph interpretation, X-ray diffraction analysis, and slope stability analysis using Stereographic Projection and Limit Equilibrium methods. As the result, it is identified that tension cracks had been developed one year before the landslide took place. The tension crack semis to be formed by merging several joint sets. It appears that failure blocks broke down along the sliding planes of different layers. Risk of plane failure is conformed as a result of stability analysis using Stereographic Projection and Limit Equilibrium methods in case that greenish gray tuffaceous shales, regared as sliding planes, are weathered. From now on, a detailed investigation is needed for the thin layers which is sensitive to weathering, and stability analysis for this layer is performed at cut slope construction site having similar geological condition.

STUDY ON THE PROPERTIES OF GYPSUM-BONDED DENTAL INVESTMENTS (치과용 석고계 매몰재의 특성에 관한 연구)

  • Kim, Kyoung-Sun;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.1
    • /
    • pp.137-163
    • /
    • 1990
  • The properties of a investment material can be described by the consistency at the slurry state, the setting time, the compressive strength and the thermal expansion during the casting. In this study the effect of the production parameters which are included the ratio of quartz and cristobalite, the content of binder, the water powder ratio and the content and concentration of additives on the Properties of the gypsum-bonded investments has been investigated with help of the consistency test, the vicat needle test, the compressive strength test, the thermal expansion test, x-ray diffraction and DTA thermal differential test. The experimental results showed that the constitution of a investment with W/P ratio of 0.34, 30% of gypsum, 0.8% aluminium sulfate, 2% magnesium sulfate, 0.6% sodium phosphate was adapted for the properties of the KDA Spec. No. 13 type I investment. The important experimental results are summarized as follows. 1. The consistency of the investment decreased with increasing amount of aluminium sulfate and decreasing amount of sodium phosphate. An addition of magnesium sulfate up to 2% an increase of the consistency was shown. But 3% magnesium sulfate in investment showed a decrease of the consistency. The consistency did not vary significantly with a variation of the content of gypsum and cristobalite and the W/P ratio. 2. Aluminium sulfate and the magnesium sulfate promoted the hardening and the aluminium phosphate delayed the hardening. The setting time increased with amount of gypsum. The effect of the matrix on the setting time was insignificant. With the W/P ratio of 0.34 the setting time was 14 min. 3. The compressive strength decreased with the amount of aluminium sulfate up to 0.25% and increased with the amount of aluminium sulfate greater than 3%. The compressive strength decreased as decreasing the amount of magnesium sulfate and gypsum and as increasing the W/P ratio. The effect of the refractory on the compressive strength was also not significant. With the W/P ratio of 0.34 the compressive strength was $34Kg/mm^2$. 4. The 1st thermal expansion was found at the temperature near and the steady state or the contraction stage was found at the temperature between $250^{\circ}C$ and $500^{\circ}C$. After this stage the 2nd thermal expansion took place at the temperature near $500^{\circ}C$. The amount of thermal expansion increased with decreasing the content of magnesium sulfate, aluminium sulfate and gypsum and the W/P ratio. And the amount of thermal expansion increased as the content of sodium phosphate and cristobalite. With the W/P ratio of 0.34 the amount of total expansion was 1.2%.

  • PDF