• Title/Summary/Keyword: X-ray detector

Search Result 457, Processing Time 0.041 seconds

Synthesis and Molecular Structure of p-tert-butylcalix[4]arene Hexanoate

  • Park, Young-Ja;Kwanghyun No;Cho, Sun-Hee
    • Korean Journal of Crystallography
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • Two conformational isomers of p-tert-butylcalix[4]arene hexanoate were prepared from the reaction of-p-tert-butylcalix[4]arene and hexanoly chloride in the presence of AlCl3 in CH2Cl2 and their structures were determined by NMR spectra and X-ray diffraction as a cone and a 1,3-alternate conformer, respectively. The crystal of cone conformer (C68H96O8·(CH3)2CO) is triclinic, P, a=15.066(1) , b=16.063(1) , c=16.365(1) , α=79.75(2)o, β=109.95(2)o, γ=80.32(0)o, V=3602.7(4) 3, Z=2. The intensity data were collected on Simens SMART diffractometer/CCD area detector. The structure was solved by direct method and refined by least-squares calculations to a final R value of 0.144 for 4638 observed reflections. The molecular conformation is distorted symmetric cone with the flattening A and D phenyl rings. The crystal of 1,3-alternate conformer (C68H96O8·2CHCl3) is orthorhombic, Pca21, a=34.586(5) , b=10.207(3) , c=20.394(4) , V=7199(3) 3, Z=4. The intensity data were collected on an Enraf-Noninus CAD-4 Diffractometer with a graphite monochromated Mo-K radiation. The structure was solved by direct method and refined by least-squares calculations to a final R value of 0.152 for 2241 observed reflections. The molecule has a pseudo mirror symmetric 1,3-alternate conformation.

  • PDF

Monte Carlo Simulation Based Digitally Reconstructed Radiographs

  • Kakinohana, Yasumasa;Ogawa, Kazuhiko;Toita, Takafumi;Murayama, Sadayuki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.436-438
    • /
    • 2002
  • As the use of virtual simulation expands, digitally reconstructed radiographs (DRRs), which mimic conventional simulation films, play an increasingly important role as reference images in the verification of treatment fields. The purpose of our study is to develop an algorithm for computation of digitally reconstructed radiographs based on Monte Carlo simulation that take into account almost all possible physical processes by which photons interact with matter. The Monte Carlo simulation based DRRs have the following features. 1) Account has been taken of almost all possible physical processes of interaction of photons with matter, including a detector (film) response. In principle, this is equivalent to X-ray radiography. 2) Arbitrary photon energies (from diagnostic to therapeutic) can be used to produce DRRs. One can even use electrons as the source. 3) It is easy to produce a double exposure, which mimics the double exposure portal image and may have superior visual appeal for treatment field verification, with weighting within the treatment field.

  • PDF

ZnO films grown on GaN/sapphire substrates by pulsed laser deposition

  • Suh, Joo-Young;Song, Hoo-Young;Shin, Myoung-Jun;Park, Young-Jin;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.207-207
    • /
    • 2010
  • Both ZnO and GaN have excellent physical properties in optoelectronic devices such as blue light emitting diode (LED), blue laser diode (LD), and ultra-violet (UV) detector. The ZnO/GaN heterostructure, which has a potential to achieve the cost efficient LED technology, has been fabricated by using radio frequency (RF) sputtering, pyrolysis, metal organic chemical vapor deposition (MOCVD), direct current (DC) arc plasmatron, and pulsed laser deposition (PLD) methods. Among them, the PLD system has a benefit to control the composition ratio of the grown film from the mixture target. A 500-nm-thick ZnO film was grown by PLD technique on c-plane GaN/sapphire substrates. The post annealing process was executed at some varied temperature between from $300^{\circ}C$ to $900^{\circ}C$. The morphology and crystal structural properties obtained by using atomic force microscope (AFM) and x-ray diffraction (XRD) showed that the crystal quality of ZnO thin films can be improved as increasing the annealing temperature. We will discuss the post-treatment effect on film quality (uniformity and reliability) of ZnO/GaN heterostructures.

  • PDF

Effect of Oxidizer on the Polishing in Cadmium Telluride CMP (카드뮴 텔룰라이드 CMP 공정에서 산화제가 연마에 미치는 영향)

  • Shin, Byeong Cheol;Lee, Chang Suk;Jeong, Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • Cadmium telluride (CdTe) is being developed for thin film of the X-Ray detector recently. But a rough surface of the CdTe should be improved for resolution and signal speed. This paper shows the study on the improvement of surface roughness and removal rate by applying Chemical Mechanical Polishing. The conventional potassium hydroxide (KOH) based colloidal silica slurry could not realize a mirror surface without physical defects, resulting in low material removal rate and many scratches on surface. In order to enhance chemical reaction such as form oxidized layer on the surface of cadmium telluride, we used hydrogen peroxide ($H_2O_2$) as an oxidizer. Consequently, in case of 3 wt% concentration of hydrogen peroxide, the highest MRR (938 nm/min) and the lowest surface roughness ($R_{p-v}=10.69nm$, $R_a=0.8nm$) could be obtained. EDS was also used to confirm the generated oxide of cadmium telluride surface.

Characterization of X-ray Detector for CCD-based Electronic Portal Imaging Device (CCD를 이용한 전자포탈영상장치의 엑스선 계측기 특성에 관한 연구)

  • 정용현;김호경;조규성;안성규;이형구;윤세철
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.119-127
    • /
    • 2000
  • 금속판/형과스크린 계측기와 CCD 카메라를 이용한 방사선영상장치가 현재 전자포탈영상에 널리 쓰이고 있다. 이 장치의 효율적인 영상획득을 위해 계측효율이 좋고, 공간분해능력이 뛰어난 금속판/ 형과스크린 계측기의 두께를 최적화할 필요가 있었다. 이 논문에서는 금속판과 형광스크린의 두께가 계측효율과 공간분해능에 미치는 영향이 연구되었다. 이 결과는 치료 엑스선 영상장치에 쓰일 수 있는 금속판/형과스크린 계측기의 최적화된 두께를 결정하는데 쓰일 수 있다. 몬테칼로 방법을 이용하여 계산한6 MV 선형가속기에서 발생되는 엑시선의 에너지 스펙트럼을 바탕으로, 여러 가지 두께의 금속판/형광스크린에 대하여 계측효율과 공간분해능을 계산하였고, 이를 실험을 통해 검증하였다. 계측효율은 입사된 엑스선의 에너지가 형광스크린에 흡수된 비율로 계산되며, 공간분해능은 흡수된 에너지의 공간 분포를 통해 계산되었다. 계측효율은 금속판의 두께에 의해, 공간분해능은 형광스크린의 두께에 의해 결정될 수 있음을 본 연구를 통해 확인할 수 있었고, 이로써 특정이용에 관련된 금속판/형광스크린의 두께에 대한 서로 보상 (trade-off) 관계에 있음을 계산과 측정결과를 통해 확인할 수 있었고, 이로써 특정이용에 관련된 금속판/형광스크린 계측기의 최적화된 두께를 산출할 수 있게 되었다. 계산을 바탕으로 CCD를 이용한 전자포탈영상장치의 시작품을 설계 및 제작하였고 팬텀을 이용하여 영상을 얻었다. 단일 프레임 영상은 노이즈가 많으나, 프레임 평균 방법을 이용하여 영상의 질을 향상시킬 수 있었다.

  • PDF

Comparative study on alveolar bone height of pantomography and multi planar reformatted computed tomography (파노라마방사선사진과 다면상재구성 CT상의 치조골 높이 계측에 대한 비교 연구)

  • Ji Jung-Hyun;Lee Sang-Rae;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.3
    • /
    • pp.159-164
    • /
    • 2004
  • Purpose: To compare alveolar bony height of pantomograph with bony height of thin slice, multiplanar reformatted (MPR) Computed Tomograph. Materials and Methods : Panoramic radiograms of 12 young adult patients had been taken by one radologic technitian and the measurements were corrected by magnification ratio (1.20). The slice thickness of Multi-detector Computed Tomography (CT) was at least 1mm for the accuracy. The raw CT datas were imported into the V-works 4.0 (CyberMed Corp., Seoul, Korea) and transformed to MPR images. Pantomographic measurements of alveolar bone were compared to CT values by average mean bony height measurements for the accuracy. Inter-, and Intra-observer variability was evaluated. Results : There was no significant differences between height measurement of pantomography and that of CT (P>0.05). There were no significant differences in either inter-or intra-observer measurements (P>0.05). Conclusion : Pantomography showed relatively high accuracy and precision in measuring alveolar bony height.

  • PDF

Pictorial Review of Diffuse Central Airway Diseases: Focus on CT Findings

  • Ahn, Hye-Shin;Hwang, Jung-Hwa;Chang, Yun-Woo;Kim, Hyun-Joo;Kwon, Kui-Hyang;Choi, Deuk-Lin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.1
    • /
    • pp.10-20
    • /
    • 2011
  • Various diseases can diffusely involve central airways, including the trachea and main stem bronchi. Central airway abnormalities are frequently not apparent or are overlooked on chest radiographs, even though the patient may have significant symptoms. Recent advances in spiral and multi-detector computed tomography (CT) with multi-planar reconstruction and three-dimensional demonstration, including virtual bronchoscopy, allow for excellent display of central airway anatomy and abnormalities with visualization of accurate locations of lesions. Early detection and proper diagnosis of airway diseases based on various radiographic findings will help determine appropriate treatment, including surgical planning and evaluation of treatment response. Herein we describe and illustrate the imaging findings of a wide spectra of diffuse central airway diseases.

The study of Na Doping rate for application CsI:Na in the amorphous selenium (비정질 셀레늄 기반에서 CsI:Na 응용을 위한 Na의 조성비 연구)

  • Cha, Byung-Youl;Park, Ji-Koon;Kang, Sang-Sik;Lee, Kyu-Hong;Nam, Sang-Hee;Choi, Heung-Kook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.412-414
    • /
    • 2003
  • This paper is about research of scintillator layer, which is used for Hybrid method to increase electric signals in a-Se, the material of Direct method. In case of the thermal evaporation, CsI has column structure which is an disadvantage as scintillator. But it decreases scattering of incident X-ray, has better Light output intensity than other scintillation materials. CsI was made by Thermal evaporation. The Doping material, Na, 0.1, 0.3, 0.5, 0.7g were added in each sample. Analysis of absorbed wavelength, PL(Photoluminescence), Light output intensity, SEM, and XRD analysis were performed to analyze optical characteristics. Doping rate of CsI:Na to use as scintillation layer in a-Se based detector could be optimized.

  • PDF

마이크로볼로미터를 위한 VOx-ZnO 다층 박막의 XRD 특성 연구

  • Mun, Su-Bin;Han, Seok-Man;Kim, Dae-Hyeon;Kim, Hyo-Jin;Sin, Jae-Cheol;Jang, Won-Geun;Han, Myeong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.234-234
    • /
    • 2013
  • VOx 박막은 마이크로볼로미터 적외선 센서의 감지재료로 주로 사용된다. 일반적으로 VOx 박막은 RF sputtering 방법으로 증착이 되며, 이 때 저항 값은 수 kohm~수 Mohm, TCR 값은 -1.5~-2.0%/K까지 다양하게 변화되어 나타난다. 이는 산소의 phase가 여러가지로 변화되기 때문에 재현성이 떨어지는 단점이 있으며, 결정성있는 박막을 증착하기 어려운 문제들이 있다. 본 연구에서는 VOx 박막의 재현성 및 재료의 안정성을 위해 ZnO 물질을 첨가하여 sandwich 구조의 나노박막을 증착하여 산소 열처리를 통해 산소의 phase가 어떻게 변화되는가를 XRD 측정을 통해 조사하였다. ZnO 나노박막을 첨가함으로써 갓 증착되었을 때의 XRD는 V2O5 주된 상을 이루고 있었으며, 산소열처리에 의해 VO2상이 나타남을 알 수 있었다. 또한 V2O5 phase가 표면쪽의 얇은 층에서 주로 나타나고, 중간층은 V2O5와 VO2 phase 가 혼합된 형태로 존재함을 X-ray diffraction 분석을 통해 알 수 있었다. 또한 GIXRD 측정을 통해 깊이에 따른 혼합 phase가 주로 VO2에 의해 형성된 것임을 확인할 수 있었다. 또한 산소열처리의 온도 및 시간에 따라 XRD 특성을 조사하였으며, 최적의 열처리 조건을 XRD 피크를 통해 찾고자 하였다.

  • PDF

Development and Usefulness Evaluation of Virtual Reality Simulator for Education of Spatial Dose Rate in Radiation Controlled Area (방사선관리구역의 공간선량률 교육을 위한 가상현실 시뮬레이터의 개발과 유용성 평가)

  • Jeong-Min Seo
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.493-499
    • /
    • 2023
  • This study developed education contents of measuring spatial dose with virtual reality simulation and applied to students majoring radiological science. The virtual reality(VR) contents with measuring spatial dose rate in the radiation controlled area was developed based on the simulation from pilot study. In this simulation, the tube voltage and tube current can be set from 60 to 120 kVp in 10 kVp steps and 10 to 40 mAs in 10 mAs increments, and the distance from source can be set from 30 to 400 cm continuously. Iron and lead shields can be placed between the source and the detector, and shielding thickness can be set by 1 mm increments ranging from 1 to 20 mm. We surveyed to students for evaluating improvement of understanding spatial dose rate between before and after education by VR simulation. The survey was conducted with 5 questions(X-ray exposure factors, effects by distance from the source, effects from using shield, depending on material and thickness of shield, concept and measuring of spatial dose rate) and all answers showed significant improvement. Therefore, this VR simulation content will be well used in education for spatial dose rate and radiation safety environments.