X-ray detection has widely been applied in medical diagnostics, security screening, nondestructive testing in the industry, etc. Medical X-ray imaging procedures require digital flat detectors operating with low doses to reduce radiation health risks. Recently, metal halide perovskites (MHPs) have shown great potential in high-performance X-ray detection because of their attractive properties, such as strong X-ray absorption, high mobility-lifetime product, tunable bandgap, low-temperature fabrication, near-unity photoluminescence quantum yields, and fast photoresponse. In this paper, we review and introduce the development status of new perovskite X-ray detectors and imaging, which have emerged as a new promising high-sensitivity X-ray detection technology. We discuss the latest progress and future perspective of MHP-based X-ray detection in medical imaging. Finally, we compare the conventional detection methods with quantum-enhanced detection, pointing out the challenges and perspectives for future research directions toward perovskite-based X-ray applications.
The purpose of this paper is to analyze the characteristics of Silicon Photomultiplier (SiPM) for the realization of high-sensitivity radiation detection in portable detectors. Portable X-ray detectors offer the advantage of quickly accessing the patient's location and obtaining real-time images, allowing physicians to perform rapid diagnoses. However, this mobility comes with challenges in achieving accurate radiation detection. In existing detectors, SiPM is used for a simple purpose of detecting X-ray triggers. To verify the feasibility of high-sensitivity X-ray detection through SiPM, seven types of SiPM sensors were compared and selected, and their characteristics were analyzed. The SiPM used in the final test demonstrated the ability to distinguish signals at the ultra-low radiation level of 10 nGy, and it was observed that the slope of the signal rise curve varies with the X-ray tube voltage. Utilizing the characteristics of SiPM, which exhibits changes in signal level and duration with X-ray dose, it appears possible to achieve high-sensitivity measurements for X-ray detection.
Recently, as the demand for physical security technology to prevent leakage of technical and business information of companies and public institutions increases, the high tech companies are operating X-ray security checkpoints at building entrances to protect their intellectual property and technology. X-ray security checkpoints are operated to detect cameras and storage media that may store or leak important technologies in the bags of people entering and leaving the building. In this study, we propose an X-ray security checkpoint system that automatically detects a storage medium in an X-ray image using a deep learning based object detection method. The proposed system consists of an edge computing unit and a cloud-computing unit. We employ the RetinaNet for automatic storage media detection in the X-ray security checkpoint images. The proposed approach achieved mAP of 95.92% on private dataset.
Galaxy clusters are known to be very bright in X-ray and contain a large number of X-ray point sources within the X-ray emission. However, due to the fluctuations of the X-ray emission, it is very difficult to detect faint X-ray sources and to extract accurately the photometric properties of the X-ray point sources in galaxy clusters. In addition, the most X-ray telescopes show spatially varying point spread function (PSF) and suffer from severe vignetting. The Chandra Archival Survey of Galaxy Clusters project is a wide-area ($\sim40deg^2$) survey of serendipitous Chandra X-ray sources in galaxy cluster fields, containing ~58,000 X-ray point sources in ~800 Chandra ACIS observations of ~600 galaxy clusters. This project aim to investigate the density environmental effects on the physical properties of the X-ray point sources, comparing physical properties of the X-ray point sources in galaxy clusters to those in typical fields. To utilize the sensitivity and detection probability of the X-ray point sources in galaxy clusters, we perform extensive Monte-Carlo simulations. In this poster, we compare the detection probability of the X-ray point sources in galaxy clusters to that of typical fields, and discuss quantitatively the difference between them.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.7
/
pp.2131-2153
/
2022
To achieve accurate detection of tuberculosis (TB) areas in chest radiographs, we design a chest X-ray TB area detection algorithm. The algorithm consists of two stages: the chest X-ray TB classification network (CXTCNet) and the chest X-ray TB area detection network (CXTDNet). CXTCNet is used to judge the presence or absence of TB areas in chest X-ray images, thereby excluding the influence of other lung diseases on the detection of TB areas. It can reduce false positives in the detection network and improve the accuracy of detection results. In CXTCNet, we propose a channel attention mechanism (CAM) module and combine it with DenseNet. This module enables the network to learn more spatial and channel features information about chest X-ray images, thereby improving network performance. CXTDNet is a design based on a sparse object detection algorithm (Sparse R-CNN). A group of fixed learnable proposal boxes and learnable proposal features are using for classification and location. The predictions of the algorithm are output directly without non-maximal suppression post-processing. Furthermore, we use CLAHE to reduce image noise and improve image quality for data preprocessing. Experiments on dataset TBX11K show that the accuracy of the proposed CXTCNet is up to 99.10%, which is better than most current TB classification algorithms. Finally, our proposed chest X-ray TB detection algorithm could achieve AP of 45.35% and AP50 of 74.20%. We also establish a chest X-ray TB dataset with 304 sheets. And experiments on this dataset showed that the accuracy of the diagnosis was comparable to that of radiologists. We hope that our proposed algorithm and established dataset will advance the field of TB detection.
X-rays with shorter wavelengths than ultraviolet light have very good penetration power. It is convergence in industrial and medical fields has been used a lot. n particular, in the industrial field, various researches have been conducted on the detection of foregin body inside metal that can occur in the production process of products such as metal using x-ray, a non-destructive inspection device. Detectors are becoming increasingly popular for the popularization of DR (Digital Radiography) photography methods that digitally acquire X-ray video images. However, there are cases where foreign body detection is impossible depending on the sensor noise and sensitivity inside the detector. When producing a metal product, since the defective rate of the produced product may increase due to contamination of the foreign body, accurate detection is necessary. In this paper, we provide a correction model for X-ray images acquired in order to improve the efficiency of defect detection such as foreign body inside metal. When applied to defect detection in the production process of metal products through the proposed model, it is expected that the detection of product defects can be processed accurately and quickly.
Internal cracks in products are invisible and can lead to fatal crashes or damage. Since X-rays can penetrate materials and be attenuated according to the material’s thickness and density, they have rapidly become the accepted technology for non-destructive inspection of internal cracks. This paper presents a robust crack filter based on local gray level variation and multiscale analysis for automatic detection of cracks in X-ray images. The proposed filter takes advantage of the image gray level and its local variations to detect cracks in the X-ray image. To overcome the problems of image noise and the non-uniform intensity of the X-ray image, a new method of estimating the local gray level variation is proposed in this paper. In order to detect various sizes of crack, this paper proposes using different neighboring distances to construct an image pyramid for multiscale analysis. By use of local gray level variation and multiscale analysis, the proposed crack filter is able to detect cracks of various sizes in X-ray images while contending with the problems of noise and non-uniform intensity. Experimental results show that the proposed crack filter outperforms the Gaussian model based crack filter and the LBP model based method in terms of detection accuracy, false detection ratio and processing speed.
Background: Gamma-ray detectors having a thin window of a material with low atomic number can increase the true coincidence summing effects for radionuclides emitting X-rays or gamma-rays. This effect can make efficiency calibration or spectrum analysis more complicated. In this study, a Cu shield was tested as an X-ray filter to neglect the true coincidence summing effect by X-rays and gamma-rays in gamma-ray spectrometry, in order to simplify gamma-ray energy spectrum analysis. Materials and Methods: A Cu shield was designed and applied to an n-type high-purity germanium detector having an $X-{\gamma}$ summing effect during efficiency calibration. This was tested using a commercial, certified mixed gamma-ray source. The feasibility of a Cu shield was evaluated by comparing efficiency calibration results with and without the shield. Results and Discussion: In this study, the thickness of a Cu shield needed to avoid true coincidence summing effects due to $X-{\gamma}$ was tested and determined to be 1 mm, considering the detection efficiency desired for higher energy. As a result, the accuracy of the detection efficiency calibration was improved by more than 13% by reducing $X-{\gamma}$ summing. Conclusion: The $X-{\gamma}$ summing effect should be considered, along with ${\gamma}-{\gamma}$ summing, when a detection efficiency calibration is implemented and appropriate shielding material can be useful for simplifying analysis of the gamma-ray energy spectra.
Proceedings of the Korean Society for Agricultural Machinery Conference
/
1996.06c
/
pp.334-343
/
1996
Quality evaluation for food and agricultural products have always been one of the most elusive problems associated with the handling , processing and marketing in a food plant production. In order to detect physical foreign materials in food and agricultural products, non-destructive techniques have been developed for many years. Application of X-ray system to detect physical foreign materials in food and agricultural products could be considered to be a high potential method. Especially , it is impossible to detect internal physical foreign materials by visual inspections. In this study, it was tried to be applied for two different X-ray devices. Soft X-ray system with CdTe sensor and X-ray CT scanner were evaluated for advantage of the detection of non-meltallic foreign materials in food and agricultural products . Though the soft X-ray is not a high energy radiation, it is possible to detect small different density in a material. The CdTe sensor has a high resolution for t e soft X-ray energy region. The density characteristics of foods and foreign material were expressed region. The density characteristics of foods and foreign materials were expressed as a soft X-ray energy spectrum. The energy spectrum was analyzed by a personal computer with a multi-channel analyzer. X-ray CT scanner can provide visual image and analyze by three dimensional information inside food and agricultural products. The X-ray CT scanner using as a medical equipment was used to detect a foreign material. The density characteristics of food and foreign materials in food were tried to be detected by the threshold value on the basis of the CT numbers. The soft X-ray absorption characteristics for acrylin plates and distilled water were obtained and could be found the possibility of detecting a small physical foreign materials such as a plastic wrapping film , a stone and grasshopper in food and agricultural products.
Sung-Hyun Kim;Kyungsu Lee;Si-Wook Lee;Jin Ho Chang;Jae Youn Hwang;Jihun Kim
The Journal of the Acoustical Society of Korea
/
v.42
no.5
/
pp.460-468
/
2023
Developmental Dysplasia of the Hip (DDH) is a pathological condition commonly occurring during the growth phase of infants. It acts as one of the factors that can disrupt an infant's growth and trigger potential complications. Therefore, it is critically important to detect and treat this condition early. The traditional diagnostic methods for DDH involve palpation techniques and diagnosis methods based on the detection of keypoints in the hip joint using X-ray or ultrasound imaging. However, there exist limitations in objectivity and productivity during keypoint detection in the hip joint. This study proposes a deep learning model-based keypoint detection method using X-ray and ultrasound imaging and analyzes the performance of keypoint detection using various deep learning models. Additionally, the study introduces and evaluates various data augmentation techniques to compensate the lack of medical data. This research demonstrated the highest keypoint detection performance when applying the residual network 152 (ResNet152) model with simple & complex augmentation techniques, with average Object Keypoint Similarity (OKS) of approximately 95.33 % and 81.21 % in X-ray and ultrasound images, respectively. These results demonstrate that the application of deep learning models to ultrasound and X-ray images to detect the keypoints in the hip joint could enhance the objectivity and productivity in DDH diagnosis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.