• 제목/요약/키워드: X-ray crystallography

검색결과 316건 처리시간 0.021초

Structural Analysis of ${\alpha}$-L-Arabinofuranosidase from Thermotoga maritima Reveals Characteristics for Thermostability and Substrate Specificity

  • Dumbrepatil, Arti;Park, Jung-Mi;Jung, Tae Yang;Song, Hyung-Nam;Jang, Myoung-Uoon;Han, Nam Soo;Kim, Tae-Jip;Woo, Eui Jeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1724-1730
    • /
    • 2012
  • An ${\alpha}$-L-arabinofuranosidase (TmAFase) from Thermotoga maritima MSB8 is a highly thermostable exo-acting hemicellulase that exhibits a relatively higher activity towards arabinan and arabinoxylan, compared with other glycoside hydrolase 51 family enzymes. In the present study, we carried out the enzymatic characterization and structural analysis of TmAFase. Tight domain associations found in TmAFase, such as an inter-domain disulfide bond (Cys306 and Cys476) in each monomer, a novel extended arm (amino acids 374-385) at the dimer interface, and total 12 salt bridges in the hexamer, may account for the thermostability of the enzyme. One of the xylan binding determinants (Trp96) was identified in the active site, and a region of amino acids (374-385) protrudes out forming an obvious wall at the substrate-binding groove to generate a cavity. The altered cavity shape with a strong negative electrostatic distribution is likely related to the unique substrate preference of TmAFase towards branched polymeric substrates.

Insight into Structural Aspects of Histidine 284 of Daphnia magna Arginine Kinase

  • Rao, Zhili;Kim, So Young;Li, Xiaotong;Kim, Da Som;Kim, Yong Ju;Park, Jung Hee
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.784-792
    • /
    • 2020
  • Arginine kinase (AK), a bioenergy-related enzyme, is distributed widely in invertebrates. The role of highly conserved histidines in AKs is still unascertained. In this study, the highly conserved histidine 284 (H284) in AK of Daphnia magna (DmAK) was replaced with alanine to elucidate the role of H284. We examined the alteration of catalytic activity and structural changes of H284A in DmAK. The catalytic activity of H284A was reduced dramatically compared to that in wild type (WT). Thus the crystal structure of H284A displayed several structural changes, including the alteration of D324, a hydrogen-bonding network around H284, and the disruption of π-stacking between the imidazole group of the H284 residue and the adenine ring of ATP. These findings suggest that such alterations might affect a conformational change of the specific loop consisting of G310-V322 at the antiparallel β-sheet region. Thus, we speculated that the H284 residue might play an important role in the conformational change of the specific loop when ATP binds to the substrate-binding site of DmAK.

Recombinant Protein Expression and Purification of the Human HMTase MMSET/NSD2

  • Morishita, Masayo;Mevius, Damiaan;Shen, Yunpeng;Di Luccio, Eric
    • Current Research on Agriculture and Life Sciences
    • /
    • 제31권3호
    • /
    • pp.157-164
    • /
    • 2013
  • Chromatin remodelers that include histone methyl transferases (HMTases) are becoming a focal point in cancer drug development. The NSD family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L are bona fide oncogenes found aberrantly expressed in several cancers, suggesting their potential role for novel therapeutic strategies. Several histone modifiers including HMTase have clear roles in human carcinogenesis but the extent of their functions and regulations are not well understood, especially in pathological conditions. The extents of the NSDs biological roles in normal and pathological conditions remain unclear. In particular, the substrate specificity of the NSDs remains unsettled and discrepant data has been reported. NSD2/MMSET is a focal point for therapeutic interventions against multiple myeloma and especially for t(4;14) myeloma, which is associated with a significantly worse prognosis than other biological subgroups. Multiple myeloma is the second most common hematological malignancy in the United States, after non-Hodgkin lymphoma. Herein, as a first step before entering a pipeline for protein x-ray crystallography, we cloned, recombinantly expressed and purified the catalytic SET domain of NSD2. Next, we demonstrated the catalytic activities, in vitro, of the recombinantly expressed NSD2-SET on H3K36 and H4K20, its biological targets at the chromatin.

  • PDF

Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp.

  • Park, Sun-Ha;Kwon, Sunghark;Lee, Chang Woo;Kim, Chang Min;Jeong, Chang Sook;Kim, Kyung-Jin;Hong, Jong Wook;Kim, Hak Jun;Park, Hyun Ho;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.244-255
    • /
    • 2019
  • Xylose isomerase (XI; E.C. 5.3.1.5) catalyzes the isomerization of xylose to xylulose, which can be used to produce bioethanol through fermentation. Therefore, XI has recently gained attention as a key catalyst in the bioenergy industry. Here, we identified, purified, and characterized a XI (PbXI) from the psychrophilic soil microorganism, Paenibacillus sp. R4. Surprisingly, activity assay results showed that PbXI is not a cold-active enzyme, but displays optimal activity at $60^{\circ}C$. We solved the crystal structure of PbXI at $1.94-{\AA}$ resolution to investigate the origin of its thermostability. The PbXI structure shows a $({\beta}/{\alpha})_8$-barrel fold with tight tetrameric interactions and it has three divalent metal ions (CaI, CaII, and CaIII). Two metal ions (CaI and CaII) located in the active site are known to be involved in the enzymatic reaction. The third metal ion (CaIII), located near the ${\beta}4-{\alpha}6$ loop region, was newly identified and is thought to be important for the stability of PbXI. Compared with previously determined thermostable and mesophilic XI structures, the ${\beta}1-{\alpha}2$ loop structures near the substrate binding pocket of PbXI were remarkably different. Site-directed mutagenesis studies suggested that the flexible ${\beta}1-{\alpha}2$ loop region is essential for PbXI activity. Our findings provide valuable insights that can be applied in protein engineering to generate low-temperature purpose-specific XI enzymes.

Crystal Structure of SAV0927 and Its Functional Implications

  • Jeong, Soyeon;Kim, Hyo Jung;Ha, Nam-Chul;Kwon, Ae-Ran
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.500-505
    • /
    • 2019
  • Staphylococcus aureus is a round-shaped, gram-positive bacterium that can cause numerous infectious diseases ranging from mild infections such as skin infections and food poisoning to life-threatening infections such as sepsis, endocarditis and toxic shock syndrome. Various antibiotic-resistant strains of S. aureus have frequently emerged, threatening human lives significantly. Despite much research on the genetics of S. aureus, many of its genes remain unknown functionally and structurally. To counteract its toxins and to prevent the antibiotic resistance of S. aureus, our understanding of S. aureus should be increased at the proteomic scale. SAV0927 was first sequenced in an antibiotic resistant S. aureus strain. The gene is a conserved hypothetical protein, and its homologues appear to be restricted to Firmicutes. In this study, we determined the crystal structure of SAV0927 at $2.5{\AA}$ resolution. The protein was primarily dimeric both in solution and in the crystals. The asymmetric unit contained five dimers that are stacked linearly with ${\sim}80^{\circ}$ rotation by each dimer, and these interactions further continued in the crystal packing, resulting in a long linear polymer. The crystal structures, together with the network analysis, provide functional implications for the SAV0927-mediated protein network.

V2O5/TiO2 촉매의 활성금속 함량이 촉매 활성에 미치는 영향 (Effect of Active Metal Loading on Catalytic Activity of V2O5/TiO2 Catalysts)

  • 장영희;김성철;김성수
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.482-487
    • /
    • 2022
  • 본 연구에서는 V/TiO2 촉매를 사용하여 황화수소 상온 제거 특성을 평가하기 위해 촉매 활성 실험 및 특성 분석을 수행하였다. 최적 바나듐 함량은 10 wt%였고, 상대습도 60~80% 조건에서 60분 이상의 내구성을 보였다. BET 및 raman 분석을 통해, 표면에 노출된 바나듐의 구조가 V/TiO2 촉매 활성의 지배적인 요인인 것으로 나타났다. 또한 SEM, EDS 그리고 XRD 분석은 촉매 표면에 생성물인 황이 축적될 수 있음을 보였으며, 결과적으로 촉매의 내구성이 감소되었다. 따라서 촉매 산화와 재생 공정의 연계가 필요할 것으로 판단된다.

Color-Tuning Mechanism of the Lit Form of Orange Carotenoid Protein

  • Man-Hyuk Han;Hee Wook Yang;Jungmin Yoon;Yvette Villafani;Ji-Young Song;Cheol Ho Pan;Keunwan Park;Youngmoon Cho;Ji-Joon Song;Seung Joong Kim;Youn-Il Park;Jiyong Park
    • Molecules and Cells
    • /
    • 제46권8호
    • /
    • pp.513-525
    • /
    • 2023
  • Orange carotenoid protein (OCP) of photosynthetic cyanobacteria binds to ketocarotenoids noncovalently and absorbs excess light to protect the host organism from light-induced oxidative damage. Herein, we found that mutating valine 40 in the α3 helix of Gloeocapsa sp. PCC 7513 (GlOCP1) resulted in blue- or red-shifts of 6-20 nm in the absorption maxima of the lit forms. We analyzed the origins of absorption maxima shifts by integrating X-ray crystallography, homology modeling, molecular dynamics simulations, and hybrid quantum mechanics/molecular mechanics calculations. Our analysis suggested that the single residue mutations alter the polar environment surrounding the bound canthaxanthin, thereby modulating the degree of charge transfer in the photoexcited state of the chromophore. Our integrated investigations reveal the mechanism of color adaptation specific to OCPs and suggest a design principle for color-specific photoswitches.

Crystal Structure and Biochemical Analysis of a Cytochrome P450 Steroid Hydroxylase (BaCYP106A6) from Bacillus Species

  • Ki-Hwa Kim;Hackwon Do;Chang Woo Lee;Pradeep Subedi;Mieyoung Choi;Yewon Nam;Jun Hyuck Lee;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.387-397
    • /
    • 2023
  • Cytochrome P450 (CYP) is a heme-containing enzyme that catalyzes hydroxylation reactions with various substrate molecules. Steroid hydroxylases are particularly useful for effectively introducing hydroxyl groups into a wide range of steroids in the pharmaceutical industry. This study reports a newly identified CYP steroid hydroxylase (BaCYP106A6) from the bacterium Bacillus sp. and characterizes it using an in vitro enzyme assay and structural investigation. Bioconversion assays indicated that BaCYP106A1 catalyzes the hydroxylation of progesterone and androstenedione, whereas no or low conversion was observed with 11β-hydroxysteroids such as cortisol, corticosterone, dexamethasone, and prednisolone. In addition, the crystal structure of BaCYP106A6 was determined at a resolution of 2.8 Å to investigate the configuration of the substrate-binding site and understand substrate preference. This structural characterization and comparison with other bacterial steroid hydroxylase CYPs allowed us to identify a unique Arg295 residue that may serve as the key residue for substrate specificity and regioselectivity in BaCYP106A6. This observation provides valuable background for further protein engineering to design commercially useful CYP steroid hydroxylases with different substrate specificities.

대장균 시스템을 이용한 Arabidopsis 막 단백질 cytochrome P450 p-coumarate-3hydroxylase (C3H) 활성형의 과발현 및 분리정제 (High Yield Bacterial Expression and Purification of Active Cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis Membrane Protein)

  • 양희정;김완연;윤영주;윤지원;권태우;윤혜숙;윤부현
    • 생명과학회지
    • /
    • 제19권8호
    • /
    • pp.1039-1046
    • /
    • 2009
  • 다양한 천연물의 합성대사에 관여하는 식물 cytochrome P450 (P450s)은 그 기능적 다양성에도 불구하고, 이들 효소의 광범위한 기질 특이성을 설명해 줄 수 있는 구조분석에 대해서는 충분한 연구가 이루어지지 못하고 있는 실정이다. 식물 p-coumarate 3-hydroxylase (C3H)에 의해 매개되는 효소 반응은 lignin 과 다양한 phenylpropanoid 부산물들의 생합성에 매우 중요한 것으로 여겨지지만, 막 단백질인 C3H의 발현 및 정제가 효과적으로 이루어지지 못하여, 활성을 측정하기 위한 분석방법이 체계화 되지 못하고 있다. C3H의 작용기작과 기질특이성에 대해 폭넓은 이해를 위한 구조분석의 선행단계는 활성을 갖는 C3H를 밀리그램 단위로 분리, 정제하는 실험적 방법을 확립하는 것이라 할 수 있다. 이를 위해, 본 연구에서는 다양한 돌연변이 방법을 도입하여 식물 막단백질 C3H를 대장균 시스템에서 효과적으로 발현 및 정제할 수 있는 시스템을 사용하였다. 변형된 cytochrome P450 C3H ($C3H_{mod}$)을 세포막으로부터 고농도의 염완충용액을 이용하여 계면활성제 없이 추출하였으며, 2단계 chromatography를 통해 활성을 유지한 상태로 분리할 수 있었다. 이러한 실험적 기법은 NMR 및 X-ray crystallography와 같은 구조분석을 통한 C3H의 효과적인 분석에 적용될 수 있을 것이며, 또한 다른 식물 cytochrome P450 단백질의 효과적인 분석에도 적용 될 수 있을 것이다.

Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ)의 결정구조 (The Crystal Structure of Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ))

  • 김세환;남궁해;이현미
    • 대한화학회지
    • /
    • 제38권11호
    • /
    • pp.827-832
    • /
    • 1994
  • (N-methylphenazinium) bis(oxalato)palladate(II)$((C_{13}H_{11}N_2)_2[Pd(C_2O_4)_2])$의 착이온 및 결정의 구조는 X-선 회절법으로 연구하였다. 이 결정은 사방정계이고 공간군은 P1 (군번호 = 2)이다. 단위세포 길이는 a = 7.616(8), b = 9.842(3), c = $20.335(7)\AA$, $\alpha$ = 103.53(3), $\beta$ = 90.00(5), $\gamma$ = $112.38(5)^{\circ}이며$, $V = 1363(2){\AA}^3,\;F_w = 672.93,\;D_c = 1.639\;gcm^{-3},\;F(000) = 680.0,\;{\mu} = 7.3\;cm^{-1},\;Z = 2$이다. 회절반점들의 세기는 흑연 단색화 장치가 있는 자동 4축 회절기로 얻었으며 $Mo-K\alpha$ X - 선(${\lambda}$= 0.7107 $\AA)$을 사용하였다. 구조분석은 중금속법으로 풀었으며, 최소자승법으로 정밀화하였고, 최종 신뢰도 값들은 3120개의 회절반점에 대하여 $R = 0.069,\;R_w = 0.050,\;R_{all} = 0.069$ 및 S = 5.45였다. 착이온들은 근본적인 평면구조로써, 이들의 충진구조는 착음이온들을 두개의 양이온들이 거의 평행하게 둘러싸고 있는 삼중체들을 형성하고 있다. 양이온과 음이온들의 이면각들이 각각 6.3(6)과 $57.06(6)^{\circ}$인 삼중체들이 b축을 따라서 배열되어 있으나, 삼중체면의 배향은 두 가지 착음이온의 이면각이 $59.08(9)^{\circ}$을 이루는 방향이다. 삼중체내의 면간거리는 각각 3.328와 3.463 $\AA$이었다.

  • PDF