References
- Adeyemi, O.S. and Whiteley, C.G. (2014). Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei : thermodynamic and spectrofluorimetric evaluation. Biochim. Biophys. Acta 1840, 701-706. https://doi.org/10.1016/j.bbagen.2013.10.038
- Alonso, G.D., Pereira, C.A., Remedi, M.S., Paveto, M.C., Cochella, L., Ivaldi, M.S., Gerez de Burgos, N.M., Torres, H.N., and Flawia, M.M. (2001). Arginine kinase of the flagellate protozoa Trypanosoma cruzi. Regulation of its expression and catalytic activity. FEBS Lett. 498, 22-25. https://doi.org/10.1016/S0014-5793(01)02473-5
- Azzi, A., Clark, S.A., Ellington, W.R., and Chapman, M.S. (2004). The role of phosphagen specificity loops in arginine kinase. Protein Sci. 13, 575-585. https://doi.org/10.1110/ps.03428304
- Baoyu, C., Qin, G., Zhi, G., and Xicheng, W. (2003). Improved activity assay method for arginine kinase based on a ternary heteropolyacid system. Tsinghua Sci. Technol. 8, 422-427. https://doi.org/10.1109/TST.2003.6075584
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Brown, A.E. and Grossman, S.H. (2004). The mechanism and modes of inhibition of arginine kinase from the cockroach (Periplaneta americana). Arch. Insect Biochem. Physiol. 57, 166-177. https://doi.org/10.1002/arch.20026
- Chen, L.H., Borders, C.L., Vasquez, J.R., and Kenyon, G.L. (1996). Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues. Biochemistry 35, 7895-7902. https://doi.org/10.1021/bi952798i
- Clark, S.A., Davulcu, O., and Chapman, M.S. (2012). Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs. Biochem. Biophys. Res. Commun. 427, 212-217. https://doi.org/10.1016/j.bbrc.2012.09.053
- Ellington, W.R. (1989). Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J. Exp. Biol. 143, 177-194. https://doi.org/10.1242/jeb.143.1.177
- Ellington, W.R. (2001). Evolution and physiological roles of phosphagen systems. Annu. Rev. Physiol. 63, 289-325. https://doi.org/10.1146/annurev.physiol.63.1.289
- Emsley, P. and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126- 2132. https://doi.org/10.1107/S0907444904019158
- Fernandez, P., Haouz, A., Pereira, C.A., Aguilar, C., and Alzari, P.M. (2007). The crystal structure of Trypanosoma cruzi arginine kinase. Proteins 69, 209-212. https://doi.org/10.1002/prot.21557
- Forstner, M., Muller, A., Stolz, M., and Wallimann, T. (1997). The active site histidines of creatine kinase. A critical role of His 61 situated on a flexible loop. Protein Sci. 6, 331-339. https://doi.org/10.1002/pro.5560060208
- Gattis, J.L., Ruben, E., Fenley, M.O., Ellington, W.R., and Chapman, M.S. (2004). The active site cysteine of arginine kinase: structural and functional analysis of partially active mutants. Biochemistry 43, 8680-8689. https://doi.org/10.1021/bi049793i
- Guo, Q., Chen, B., and Wang, X. (2004). Evidence for proximal cysteine and lysine residues at or near the active site of arginine kinase of Stichopus japonicus. Biochemistry (Mosc). 69, 1336-1343. https://doi.org/10.1007/s10541-005-0078-3
- Hansen, D.E. and Knowles, J.R. (1981). The stereochemical course of the reaction catalyzed by creatine kinase. J. Biol. Chem. 256, 5967-5969. https://doi.org/10.1016/S0021-9258(19)69111-8
- Kabsch, W. (2010). Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125-132. https://doi.org/10.1107/S0907444909047337
- Krissinel, E. and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256-2268. https://doi.org/10.1107/S0907444904026460
- Li, M., Wang, X.Y., and Bai, J.G. (2006). Purification and characterization of arginine kinase from locust. Protein Pept. Lett. 13, 405-410. https://doi.org/10.2174/092986606775974375
- Liu, N., Wang, J.S., Wang, W.D., and Pan, J.C. (2011). The role of Cys271 in conformational changes of arginine kinase. Int. J. Biol. Macromol. 49, 98-102. https://doi.org/10.1016/j.ijbiomac.2011.04.002
- Lopez-Zavala, A.A., Garcia-Orozco, K.D., Carrasco-Miranda, J.S., SugichMiranda, R., Velazquez-Contreras, E.F., Criscitiello, M.F., Brieba, L.G., Rudino-Pinera, E., and Sotelo-Mundo, R.R. (2013). Crystal structure of shrimp arginine kinase in binary complex with arginine-a molecular view of the phosphagen precursor binding to the enzyme. J. Bioenerg. Biomembr. 45, 511-518. https://doi.org/10.1007/s10863-013-9521-0
- McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674. https://doi.org/10.1107/S0021889807021206
- Muhlebach, S.M., Gross, M., Wirz, T., Wallimann, T., Perriard, J.C., and Wyss, M. (1994). Sequence homology and structure predictions of the creatinekinase isoenzymes. Mol. Cell. Biochem. 133, 245-262. https://doi.org/10.1007/BF01267958
- Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255. https://doi.org/10.1107/S0907444996012255
- Newsholme, E.A., Beis, I., Leech, A.R., and Zammit, V.A. (1978). The role of creatine kinase and arginine kinase in muscle. Biochem. J. 172, 533-537. https://doi.org/10.1042/bj1720533
- Niu, X., Bruschweiler-Li, L., Davulcu, O., Skalicky, J.J., Bruschweiler, R., and Chapman, M.S. (2011). Arginine kinase: joint crystallographic and NMR RDC analyses link substrate-associated motions to intrinsic flexibility. J. Mol. Biol. 405, 479-496. https://doi.org/10.1016/j.jmb.2010.11.007
- Noh, E.J., Kang, S.W., Shin, Y.J., Kim, D.C., Park, I.S., Kim, M.Y., Chun, B.G., and Min, B.H. (2002). Characterization of mycoplasma arginine deiminase expressed in E. coli and its inhibitory regulation of nitric oxide synthesis. Mol. Cells 13, 137-143.
- Pereira, C.A., Alonso, G.D., Paveto, M.C., Iribarren, A., Cabanas, M.L., Torres, H.N., and Flawia, M.M. (2000). Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites. J. Biol. Chem. 275, 1495-1501. https://doi.org/10.1074/jbc.275.2.1495
- Pruett, P.S., Azzi, A., Clark, S.A., Yousef, M.S., Gattis, J.L., Somasundaram, T., Ellington, W.R., and Chapman, M.S. (2003). The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase. J. Biol. Chem. 278, 26952-26957. https://doi.org/10.1074/jbc.M212931200
- Rao, Z., Kim, S.Y., Akanda, M.R., Lee, S.J., Jung, I.D., Park, B.Y., KamalaKannan, S., Hur, J., and Park, J.H. (2019). Enhanced expression and functional characterization of the recombinant putative lysozymePMAP36 fusion protein. Mol. Cells 42, 262-269. https://doi.org/10.14348/molcells.2019.2365
- Schrodinger (2010). The PyMOL Molecular Graphics System, version 1.3r1 (New York: Schrodinger).
- Strong, S.J. and Ellington, W.R. (1996). Expression of horseshoe crab arginine kinase in Escherichia coli and site-directed mutations of the reactive cysteine peptide. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 113, 809-816. https://doi.org/10.1016/0305-0491(95)02104-3
- Suzuki, T., Fukuta, H., Nagato, H., and Umekawa, M. (2000a). Arginine kinase from Nautilus pompilius, a living fossil. Site-directed mutagenesis studies on the role of amino acid residues in the Guanidino specificity region. J. Biol. Chem. 275, 23884-23890. https://doi.org/10.1074/jbc.M002926200
- Suzuki, T., Yamamoto, Y., and Umekawa, M. (2000b). Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system. Biochem. J. 351, 579-585. https://doi.org/10.1042/bj3510579
- Takeuchi, M., Mizuta, C., Uda, K., Fujimoto, N., Okamoto, M., and Suzuki, T. (2004). Unique evolution of Bivalvia arginine kinases. Cell. Mol. Life Sci. 61, 110-117. https://doi.org/10.1007/s00018-003-3384-1
- Uda, K., Tanaka, K., Bailly, X., Zal, F., and Suzuki, T. (2005). Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase. Int. J. Biol. Macromol. 37, 54-60. https://doi.org/10.1016/j.ijbiomac.2005.08.009
- Watts, D.C., Anosike, E.O., Moreland, B., Pollitt, R.J., and Lee, C.R. (1980). The use of arginine analogues for investigating the functional organization of the arginine-binding site in lobster muscle arginine kinase. Role of the 'essential' thiol group. Biochem. J. 185, 593-599. https://doi.org/10.1042/bj1850593
- Wu, Q.Y., Guo, H.Y., Geng, H.L., Ru, B.M., Cao, J., Chen, C., Zeng, L.Y., Wang, X.Y., Li, F., and Xu, K.L. (2014). T273 plays an important role in the activity and structural stability of arginine kinase. Int. J. Biol. Macromol. 63, 21-28. https://doi.org/10.1016/j.ijbiomac.2013.10.019
- Wu, Q.Y., Li, F., and Wang, X.Y. (2008). Evidence that the amino acid residue P272 of arginine kinase is involved in its activity, structure and stability. Int. J. Biol. Macromol. 43, 367-372. https://doi.org/10.1016/j.ijbiomac.2008.07.010
- Wyss, M. and Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiol. Rev. 80, 1107-1213. https://doi.org/10.1152/physrev.2000.80.3.1107
- Yousef, M.S., Fabiola, F., Gattis, J.L., Somasundaram, T., and Chapman, M.S. (2002). Refinement of the arginine kinase transition- state analogue complex at 1.2 Å resolution: mechanistic insights. Acta Crystallogr. D Biol. Crystallogr. 58, 2009-2017. https://doi.org/10.1107/S0907444902014683
- Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., Ellington, W.R., and Chapman, M.S. (1998). Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc. Natl. Acad. Sci. U. S. A. 95, 8449-8454. https://doi.org/10.1073/pnas.95.15.8449