DOI QR코드

DOI QR Code

Insight into Structural Aspects of Histidine 284 of Daphnia magna Arginine Kinase

  • Rao, Zhili (Division of Biotechnology, College of Environmental & Bioresources Sciences, Jeonbuk National University) ;
  • Kim, So Young (Division of Biotechnology, College of Environmental & Bioresources Sciences, Jeonbuk National University) ;
  • Li, Xiaotong (Division of Biotechnology, College of Environmental & Bioresources Sciences, Jeonbuk National University) ;
  • Kim, Da Som (Division of Biotechnology, College of Environmental & Bioresources Sciences, Jeonbuk National University) ;
  • Kim, Yong Ju (Department of Herbal Medicine Resources, College of Environmental and Bioresource Sciences, Jeonbuk National University) ;
  • Park, Jung Hee (Division of Biotechnology, College of Environmental & Bioresources Sciences, Jeonbuk National University)
  • Received : 2020.06.19
  • Accepted : 2020.08.10
  • Published : 2020.09.30

Abstract

Arginine kinase (AK), a bioenergy-related enzyme, is distributed widely in invertebrates. The role of highly conserved histidines in AKs is still unascertained. In this study, the highly conserved histidine 284 (H284) in AK of Daphnia magna (DmAK) was replaced with alanine to elucidate the role of H284. We examined the alteration of catalytic activity and structural changes of H284A in DmAK. The catalytic activity of H284A was reduced dramatically compared to that in wild type (WT). Thus the crystal structure of H284A displayed several structural changes, including the alteration of D324, a hydrogen-bonding network around H284, and the disruption of π-stacking between the imidazole group of the H284 residue and the adenine ring of ATP. These findings suggest that such alterations might affect a conformational change of the specific loop consisting of G310-V322 at the antiparallel β-sheet region. Thus, we speculated that the H284 residue might play an important role in the conformational change of the specific loop when ATP binds to the substrate-binding site of DmAK.

Keywords

References

  1. Adeyemi, O.S. and Whiteley, C.G. (2014). Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei : thermodynamic and spectrofluorimetric evaluation. Biochim. Biophys. Acta 1840, 701-706. https://doi.org/10.1016/j.bbagen.2013.10.038
  2. Alonso, G.D., Pereira, C.A., Remedi, M.S., Paveto, M.C., Cochella, L., Ivaldi, M.S., Gerez de Burgos, N.M., Torres, H.N., and Flawia, M.M. (2001). Arginine kinase of the flagellate protozoa Trypanosoma cruzi. Regulation of its expression and catalytic activity. FEBS Lett. 498, 22-25. https://doi.org/10.1016/S0014-5793(01)02473-5
  3. Azzi, A., Clark, S.A., Ellington, W.R., and Chapman, M.S. (2004). The role of phosphagen specificity loops in arginine kinase. Protein Sci. 13, 575-585. https://doi.org/10.1110/ps.03428304
  4. Baoyu, C., Qin, G., Zhi, G., and Xicheng, W. (2003). Improved activity assay method for arginine kinase based on a ternary heteropolyacid system. Tsinghua Sci. Technol. 8, 422-427. https://doi.org/10.1109/TST.2003.6075584
  5. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Brown, A.E. and Grossman, S.H. (2004). The mechanism and modes of inhibition of arginine kinase from the cockroach (Periplaneta americana). Arch. Insect Biochem. Physiol. 57, 166-177. https://doi.org/10.1002/arch.20026
  7. Chen, L.H., Borders, C.L., Vasquez, J.R., and Kenyon, G.L. (1996). Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues. Biochemistry 35, 7895-7902. https://doi.org/10.1021/bi952798i
  8. Clark, S.A., Davulcu, O., and Chapman, M.S. (2012). Crystal structures of arginine kinase in complex with ADP, nitrate, and various phosphagen analogs. Biochem. Biophys. Res. Commun. 427, 212-217. https://doi.org/10.1016/j.bbrc.2012.09.053
  9. Ellington, W.R. (1989). Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J. Exp. Biol. 143, 177-194. https://doi.org/10.1242/jeb.143.1.177
  10. Ellington, W.R. (2001). Evolution and physiological roles of phosphagen systems. Annu. Rev. Physiol. 63, 289-325. https://doi.org/10.1146/annurev.physiol.63.1.289
  11. Emsley, P. and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126- 2132. https://doi.org/10.1107/S0907444904019158
  12. Fernandez, P., Haouz, A., Pereira, C.A., Aguilar, C., and Alzari, P.M. (2007). The crystal structure of Trypanosoma cruzi arginine kinase. Proteins 69, 209-212. https://doi.org/10.1002/prot.21557
  13. Forstner, M., Muller, A., Stolz, M., and Wallimann, T. (1997). The active site histidines of creatine kinase. A critical role of His 61 situated on a flexible loop. Protein Sci. 6, 331-339. https://doi.org/10.1002/pro.5560060208
  14. Gattis, J.L., Ruben, E., Fenley, M.O., Ellington, W.R., and Chapman, M.S. (2004). The active site cysteine of arginine kinase: structural and functional analysis of partially active mutants. Biochemistry 43, 8680-8689. https://doi.org/10.1021/bi049793i
  15. Guo, Q., Chen, B., and Wang, X. (2004). Evidence for proximal cysteine and lysine residues at or near the active site of arginine kinase of Stichopus japonicus. Biochemistry (Mosc). 69, 1336-1343. https://doi.org/10.1007/s10541-005-0078-3
  16. Hansen, D.E. and Knowles, J.R. (1981). The stereochemical course of the reaction catalyzed by creatine kinase. J. Biol. Chem. 256, 5967-5969. https://doi.org/10.1016/S0021-9258(19)69111-8
  17. Kabsch, W. (2010). Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125-132. https://doi.org/10.1107/S0907444909047337
  18. Krissinel, E. and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256-2268. https://doi.org/10.1107/S0907444904026460
  19. Li, M., Wang, X.Y., and Bai, J.G. (2006). Purification and characterization of arginine kinase from locust. Protein Pept. Lett. 13, 405-410. https://doi.org/10.2174/092986606775974375
  20. Liu, N., Wang, J.S., Wang, W.D., and Pan, J.C. (2011). The role of Cys271 in conformational changes of arginine kinase. Int. J. Biol. Macromol. 49, 98-102. https://doi.org/10.1016/j.ijbiomac.2011.04.002
  21. Lopez-Zavala, A.A., Garcia-Orozco, K.D., Carrasco-Miranda, J.S., SugichMiranda, R., Velazquez-Contreras, E.F., Criscitiello, M.F., Brieba, L.G., Rudino-Pinera, E., and Sotelo-Mundo, R.R. (2013). Crystal structure of shrimp arginine kinase in binary complex with arginine-a molecular view of the phosphagen precursor binding to the enzyme. J. Bioenerg. Biomembr. 45, 511-518. https://doi.org/10.1007/s10863-013-9521-0
  22. McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674. https://doi.org/10.1107/S0021889807021206
  23. Muhlebach, S.M., Gross, M., Wirz, T., Wallimann, T., Perriard, J.C., and Wyss, M. (1994). Sequence homology and structure predictions of the creatinekinase isoenzymes. Mol. Cell. Biochem. 133, 245-262. https://doi.org/10.1007/BF01267958
  24. Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255. https://doi.org/10.1107/S0907444996012255
  25. Newsholme, E.A., Beis, I., Leech, A.R., and Zammit, V.A. (1978). The role of creatine kinase and arginine kinase in muscle. Biochem. J. 172, 533-537. https://doi.org/10.1042/bj1720533
  26. Niu, X., Bruschweiler-Li, L., Davulcu, O., Skalicky, J.J., Bruschweiler, R., and Chapman, M.S. (2011). Arginine kinase: joint crystallographic and NMR RDC analyses link substrate-associated motions to intrinsic flexibility. J. Mol. Biol. 405, 479-496. https://doi.org/10.1016/j.jmb.2010.11.007
  27. Noh, E.J., Kang, S.W., Shin, Y.J., Kim, D.C., Park, I.S., Kim, M.Y., Chun, B.G., and Min, B.H. (2002). Characterization of mycoplasma arginine deiminase expressed in E. coli and its inhibitory regulation of nitric oxide synthesis. Mol. Cells 13, 137-143.
  28. Pereira, C.A., Alonso, G.D., Paveto, M.C., Iribarren, A., Cabanas, M.L., Torres, H.N., and Flawia, M.M. (2000). Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites. J. Biol. Chem. 275, 1495-1501. https://doi.org/10.1074/jbc.275.2.1495
  29. Pruett, P.S., Azzi, A., Clark, S.A., Yousef, M.S., Gattis, J.L., Somasundaram, T., Ellington, W.R., and Chapman, M.S. (2003). The putative catalytic bases have, at most, an accessory role in the mechanism of arginine kinase. J. Biol. Chem. 278, 26952-26957. https://doi.org/10.1074/jbc.M212931200
  30. Rao, Z., Kim, S.Y., Akanda, M.R., Lee, S.J., Jung, I.D., Park, B.Y., KamalaKannan, S., Hur, J., and Park, J.H. (2019). Enhanced expression and functional characterization of the recombinant putative lysozymePMAP36 fusion protein. Mol. Cells 42, 262-269. https://doi.org/10.14348/molcells.2019.2365
  31. Schrodinger (2010). The PyMOL Molecular Graphics System, version 1.3r1 (New York: Schrodinger).
  32. Strong, S.J. and Ellington, W.R. (1996). Expression of horseshoe crab arginine kinase in Escherichia coli and site-directed mutations of the reactive cysteine peptide. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 113, 809-816. https://doi.org/10.1016/0305-0491(95)02104-3
  33. Suzuki, T., Fukuta, H., Nagato, H., and Umekawa, M. (2000a). Arginine kinase from Nautilus pompilius, a living fossil. Site-directed mutagenesis studies on the role of amino acid residues in the Guanidino specificity region. J. Biol. Chem. 275, 23884-23890. https://doi.org/10.1074/jbc.M002926200
  34. Suzuki, T., Yamamoto, Y., and Umekawa, M. (2000b). Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system. Biochem. J. 351, 579-585. https://doi.org/10.1042/bj3510579
  35. Takeuchi, M., Mizuta, C., Uda, K., Fujimoto, N., Okamoto, M., and Suzuki, T. (2004). Unique evolution of Bivalvia arginine kinases. Cell. Mol. Life Sci. 61, 110-117. https://doi.org/10.1007/s00018-003-3384-1
  36. Uda, K., Tanaka, K., Bailly, X., Zal, F., and Suzuki, T. (2005). Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase. Int. J. Biol. Macromol. 37, 54-60. https://doi.org/10.1016/j.ijbiomac.2005.08.009
  37. Watts, D.C., Anosike, E.O., Moreland, B., Pollitt, R.J., and Lee, C.R. (1980). The use of arginine analogues for investigating the functional organization of the arginine-binding site in lobster muscle arginine kinase. Role of the 'essential' thiol group. Biochem. J. 185, 593-599. https://doi.org/10.1042/bj1850593
  38. Wu, Q.Y., Guo, H.Y., Geng, H.L., Ru, B.M., Cao, J., Chen, C., Zeng, L.Y., Wang, X.Y., Li, F., and Xu, K.L. (2014). T273 plays an important role in the activity and structural stability of arginine kinase. Int. J. Biol. Macromol. 63, 21-28. https://doi.org/10.1016/j.ijbiomac.2013.10.019
  39. Wu, Q.Y., Li, F., and Wang, X.Y. (2008). Evidence that the amino acid residue P272 of arginine kinase is involved in its activity, structure and stability. Int. J. Biol. Macromol. 43, 367-372. https://doi.org/10.1016/j.ijbiomac.2008.07.010
  40. Wyss, M. and Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiol. Rev. 80, 1107-1213. https://doi.org/10.1152/physrev.2000.80.3.1107
  41. Yousef, M.S., Fabiola, F., Gattis, J.L., Somasundaram, T., and Chapman, M.S. (2002). Refinement of the arginine kinase transition- state analogue complex at 1.2 Å resolution: mechanistic insights. Acta Crystallogr. D Biol. Crystallogr. 58, 2009-2017. https://doi.org/10.1107/S0907444902014683
  42. Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., Ellington, W.R., and Chapman, M.S. (1998). Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc. Natl. Acad. Sci. U. S. A. 95, 8449-8454. https://doi.org/10.1073/pnas.95.15.8449