• Title/Summary/Keyword: X-ray Structure Analysis

Search Result 1,125, Processing Time 0.027 seconds

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

$La_{0.7}Ca_{0.3-x}Ba_xMnO_3$ manganites : Local structure and transport properties

  • A.N.Ulyanov;Yang, Dong-Seok;Yu, Seong-Cho
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.8-8
    • /
    • 2003
  • Electron-phonon interaction plays a significant role in forming of colossal magnetoresistance effect (CMR). Polaron formation was observed by neutron diffraction and by extended X-ray absorption fine structure (EXAFS) analysis. Local probe as given by the EXAFS is a useful method to study the polaronic charge and its dependence on temperature and ions size. Here we present the EXAFS study of polaronic charge in La/sub 0.7/Ca/sub 0.3-X/Ba/sub X/MnO₃ compositions. The single phase La/sub 0.7/Ca/sub 0.3-X/Ba/sub X/MnO₃ manganites (x=0; 0.03; 0.06, ..., 0.3) were prepared by ceramic technology [1]. The Curie temperature was determined by extrapolation of the temperature dependence of the magnetization (down to zero magnetization). EXAFS experiments were carried out at the 7C EC beam line of the Pohang Light Source (PLS) in Korea. The atomic pair distribution functions (PDF) were obtained by re-regularization method [2] from filtered spectra. The PDF for the x=0.3 sample showed a single peak function and for x=0.0, 0.03, 0.06, 0.09, 0.12 compositions were asymmetric in agreement with a small Jahn-Teller elongation of two (short and long) bonds of the MnO/sub 6/ octahedron. Dispersion, σ/sub Min-O//sup 2/, and asymmetry, σ/sub Min-O//sup 3/, of the Mn-O bond distances varied significantly with x and showed a maximums at x=0.09. The maximum of σ/sub Min-O//sup 2/ is caused by increase of dynamic rms displacements of the Mn-O distances near the T/sub C/. The observed x dependence of σ/sub Min-O//sup 3/ reflects the reduction of charge carriers mobility at approaching to T/sub C/ from low as well as high temperatures.

  • PDF

Effects of TiN/Ti Multilayer Coating on the Ti-30Ta-xZr Alloy Surface (Ti-30Ta-xZr 합금의 표면에 TiN/Ti 다층막코팅효과)

  • Kim, Y.U.;Jeong, Y.H.;Cho, J.Y.;Choe, H.C.;Vang, M.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.161-168
    • /
    • 2009
  • Effects of TiN/Ti multilayer coating on the Ti-30Ta-xZr alloy surface were studied by using various experiments. The Ti-30Ta containing Zr (5, 10 and 15 wt%) were melted 10 times to improve chemical homogeneity by using a vacuum furnace. And then samples were homogenized for 24 hrs at $1000^{\circ}C$. The specimens were prepared for TiN/Ti coating by cutting and polishing. The prepared specimens were coated with TiN/Ti multilayers by using DC magnetron sputtering method. The analyses of coated surface and coated layer were carried out by field emission scanning electron microscope(FE-SEM), EDX, and X-ray diffractometer(XRD). From the microstructure and XRD analysis of Ti-30Ta-xZr alloys, The equiaxed structure was changed to needle-like structure with increasing Zr content. And $\alpha$-peak and elastic modulus increased as Zr content increased. The $\alpha$ and $\beta$ phase predominantly were found in the specimen containing high Zr content. According to the analysis of TiN/Ti coating layer, the surface defects and structures of Ti-30Ta-xZr were covered with TiN/Ti coating layer and surface roughness decreased.

Crystal Structures, Electrical Conductivities and Electrochemical Properties of LiCo1-XMgxO2(x=0.03) for Secondary Lithium Ion Batteries (리튬 2차 전지용 LiCo1-XMgxO2(x=0.03)의 결정구조, 전기전도도 및 전기화학적 특성)

  • Kim, Ho-Jin;Chung, Uoo-Chang;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.602-606
    • /
    • 2005
  • [ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.

Biomineralization Strategy of Biocomposites on Regenerated Shell: Chitin Synthesis and Regenerated Shell Formtation by Deformed Oyster Shell (생체복합체의 재생패각 합성전략: 참굴 패각의 변형에 따른 키틴 합성 및 패각재생)

  • Lee, Seungwoo;Park, Seungbin;Yeong, Donghee;Choi, Cheongsong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.529-534
    • /
    • 2008
  • The normal shell and the regenerated oyster shell, Crassostrea gigas, are separated according to the characteristics of inner shell morphology. To study characteristics of chitin obtained from the regenerated shell, chitin prepared by acid and alkali process is analyzed by FT-IR (Fourier transform infrared spectrometer) and XRD (X-ray Diffractometer). The content of insoluble protein in the normal shell was more than doubled as compared with that in the regenerated shell. A comparison of secondary structure of the normal shell and the regenerated shell revealed that the content of random of the regenerated shell was above 47%, indicating an amount in the structural unordered state. Through amino acid composition analysis and secondary protein structure of soluble protein isolated from the normal shell and the regenerated shell, it was found that there are differences in biomineralization strategy of the regenerated shell as compared to the normal shell. The relatively low hardness of the regenerated shell is caused by the change of amino acid composition and ordered secondary protein structure as compared to hardness of the normal shell.

Effect of Guest Molecules on Structure and Properties of Polymer/beta-Cyclodextrin Inclusion Compound Hybrid Films (고분자/베타-사이클로덱스트린 포접 화합물로 이루어진 고분자 혼성체 필름의 물성 및 구조에 미치는 게스트 분자의 영향)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.504-508
    • /
    • 2021
  • In this study, the effect of molecular features of guest molecules on the structure, property, and formation of poly(vinyl alcohol) (PVA)/beta-cyclodextrin (bCD) inclusion compound hybrid films was investigated using three types of guest molecules such as hydroquinone (HQ), arbutin (AB), and tranexamic acid (TA). First, the successful formation of inclusion compounds between bCD and the guest molecules, and polymer/inclusion compound hybrid were proved using Raman spectroscopy. The effect of bCD-based inclusion compounds on the structure and property of PVA matrix composites containing inclusion compounds was also studied using X-ray diffraction (XRD) and thermal analyses such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was notable that the effect of TA to the crystalline structure of the PVA was significantly different from that of using other guest molecules including HQ and AB. It was also supported by a simple molecular simulation result. This article will be a good example for demonstrating the effect of molecular characteristics on the inclusion compound formation in polymer films, which can provide important information for relevant future research.

Thermal evaporation을 이용해 성장 온도에 따른 ZnO nanorod의 특성

  • Lee, Hye-Ji;Kim, Dong-Yeong;Kim, Ji-Hwan;Kim, Hae-Jin;Son, Seon-Yeong;Kim, Jong-Jae;Kim, Hwa-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.25-25
    • /
    • 2009
  • Zinc Oxide (ZnO) nanorod were grown on Si wafer by a thermal evaporation method at various temperatures. And their structure and optical properties were measured using Photoluminescence(PL), Scanning electron microscopy(SEM), and X-ray diffraction(XRD) analysis.

  • PDF

Crystal Forms of Ziprasidone (지프라시돈의 결정형)

  • Youn, Mi-Hee;Bang, Hyo-Chun;Sohn, Young-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.2
    • /
    • pp.117-120
    • /
    • 2009
  • Two crystal forms of ziprasidone have been isolated by recrystallization from different organic solvents and characterized by differential scanning calorimetry, powder X-ray diffractometry and thermogravimetric analysis. It was confirmed that Form 2 has the same crystal structure as Form 1.

Characterization of uranium species in molten salt : An application of synchrotron-based XAFS spectroscopy

  • Cho, Young-Hwan;Choi, In-Kyu;Kim, Won-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.10a
    • /
    • pp.319.2-319
    • /
    • 2002
  • Synchrotron-based X-ray absorption spectroscopy has been applied to determine the changes in bulk oxidation state of uranium oxides in molten salt. From an analysis of XANES data, one can determine the cahnges in bulk oxidation-state of U compounds in salts(LiCl/KCl). XAFS spectroscpy is a powerful tool for probing the changes in valence state and structure of uranium compounds in colten salt as well as in noncrystalline form and doped in other matrices.

  • PDF