• Title/Summary/Keyword: X-ray Spectrum

Search Result 596, Processing Time 0.03 seconds

A New Approach on the Correction for Compton Escape Component in X-Ray Unfolding Algorithm

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.925-930
    • /
    • 1995
  • A new approach on the correction for Compton escape component in X-ray unfolding algorithm was investigated to obtain more accurate X-ray source spectrum. The X-ray detector used in this study was a planar type HPGe detector(EG&G ORTEC, GLP-32340/13-P-LP) whose energy response has been blown and ISO narrow beam series were employed as source spectrum. At lower energy Part of measured X-ray spectrum including the correction for Compton escape component more accurate unfolded spectrum was obtained by letting down the starting energy level of the collection in existing spectrum correction procedure to consider multiple scattering effects. It is, from this study, concluded that accurate correction for Compton escape component is needed in X-ray unfolding procedure since Compton scattering becomes more important as incident X-ray energies increase.

  • PDF

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

Image Quality Improvement through Energy Spectrum Change for X-ray (엑스선 에너지스펙트럼 변경을 통한 영상 화질 향상에 관한 연구)

  • Kim, Gu;Kim, Neung Gyun;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2021
  • When continuous X-ray are used when acquiring and X-ray image, even the same material may not be accurately represented in the image according to the thickness due to various X-ray energies. To solve this problem, the X-ray energy spectrum was changed to improve the image quality. Using SPEKTR v3.0, an X-ray energy spectrum with an additional filter added and a general X-ray energy spectrum using only a unique filter were obtained. Simulation was performed using the obtained X-ray energy spectrum as a radiation source for Geant4 Application for Tomographic Emission (GATE). Using GATE data, an X-ray image with an additional filter and an image reconstructed from and X-ray image without an additional filter were compared and analyzed through a mono energy image of 74 keV. In the case of using the X-ray energy spectrum without using an additional filter, the amount of X-rays transmitted according to the thickness of the same material is different from the amount that decreases according to the thickness of the material. Similar results were obtained as the amount decreased with the material thickness. In other words, a similar result was obtained when the reduced dose was used with a mono energy. When an X-ray image is obtained by changing an X-ray energy spectrum using an additional filter, a more accurate result of transmission of X-rays may be obtained. In radiological examination, it was confirmed that the appropriate use of the additional filter has a great effect on improving the image quality.

Absorption Spectroscopy of Biological Specimens Near X-ray Absorption Edges of Constituent Elements

  • Ito, Atsushi;Shinohara, Kunio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.460-462
    • /
    • 2002
  • Absorption spectra of biological specimens in the soft X-ray region have been presented with special reference to the XANES (X-ray absorption Near Edge Structure) of constituent elements. Absorption spectrum in this wavelength region is characterized by the absorption edges from which elemental content could be derived. In addition, XANES has a characteristic profile for chemical environment around the element such as chemical bond. Using the specific absorption peak we can assign not only the chemical bond but also molecules having such a chemical bond. In the present paper, absorption spectrum of DNA was measured in the wavelength range from 1.5nm to 5nm. Spectrum of Chinese Hamster Ovary (CHO) cells was compared with the DNA spectrum. XANES were distinct at the K absorption edges of major elements, C, N and O. In the spectrum of the cells prominent peaks at the L absorption edge of minor element Ca were also detectable. XANES profiles in small local areas in a cell could also be measured in combination with X-ray microscopy. These give information about local chemical environment in a cell. XANES at the phosphorus K absorption edge in a human HeLa cell was successfully obtained corresponding to a sharp and intensive XANES peak of DNA.

  • PDF

Estimated spectrum of a 6MV X-ray (Laplace transform 방법에 의한 x-ray의 에너지 스펙트럼 추정)

  • Yoo, Myung-Jin
    • Progress in Medical Physics
    • /
    • v.4 no.2
    • /
    • pp.37-47
    • /
    • 1993
  • The quality of radiation for a high energy x-ray beam can be specified by its attenuation curve in a selected material. The inverse Laplace transform of the attenuation curve can be used as an approximate indication of the energy spectrum of the beam. We have made a comparative investigation of the estimated spectrum obtained by the Laplace transform analysis of the transmitted exposure data measured in an absorption study of a 6MV x-ray beam. Two of existing transform pair models have been investicated and discussed.

  • PDF

Noise Characteristic Analysis of X-Ray Fluorescence Spectrum (형광 X-선 스펙트럼의 잡음 특징 분석)

  • Lee, Jae-Hwan;Chon, Sun-Il;Yang, Sang-Hoon;Park, Dong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2298-2304
    • /
    • 2012
  • X-ray fluorescence spectrum analysis method can be applied in many areas, including concentration analysis of RoHS elements and heavy metals etc. and we can get analysis results in a relatively short time. Because X-ray fluorescence spectrum has noises and several artifacts that lowers the accuracy of the analysis. This paper analyzes the characteristics of the noise of the X-ray fluorescence spectrum to increase the accuracy of analysis. X-ray fluorescence spectrum have the characteristics of shot noise (Poisson noise), so the noise size is relatively large in the small signal portion and the noise the size is relatively small in the large part of the signal. Existing methods of analysis and to remove noises is a method for general purposes algorithm. Since these algorithm does not reflect these noise characteristics, we get distorted analysis result. We can design efficient noise remove algorithm based on the accurate noise analysis method, and we expect high accuracy results of the elemental concentration analysis result.

Development of a neural network method for measuring the energy spectrum of a pulsed electron beam, based on Bremsstrahlung X-Ray

  • Sohrabi, Mohsen;Ayoobian, Navid;Shirani, Babak
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.266-272
    • /
    • 2021
  • In the pulsed electron beam generators, such as plasma focus devices and linear induction accelerators whose electron pulse width is in the range of nanosecond and less, as well as in cases where there is no direct access to electron beam, like runaway electrons in Tokamaks, measurement of the electron energy spectrum is a technical challenge. In such cases, the indirect measurement of the electron spectrum by using the bremsstrahlung radiation spectrum associated with it, is an appropriate solution. The problem with this method is that the matrix equation between the two spectrums is an ill-conditioned equation, which results in errors of the measured X-ray spectrum to be propagated with a large coefficient in the estimated electron spectrum. In this study, a method based on the neural network and the MCNP code is presented and evaluated to recover the electron spectrum from the X-ray generated by collision of the electron beam with a target. Multilayer perceptron network showed good accuracy in electron spectrum recovery, so that for the X-ray spectrum with errors of 3% and 10%, the network estimated the electron spectrum with an average standard error of 8% and 11%, on all of the energy intervals.

X-Ray Spectrum Modulation for Mammography (X-선 스펙트럼 변조 기술 연구)

  • Kim, Gwang-Hyeon;Kim, Gyeong-Rak;O, Chang-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.600-603
    • /
    • 2003
  • Energy spectrum modulation of X-ray source in digital mammography has been studied. In this study, we calculated various filtered spectra using the scattering data. Primary spectra were generated by Molybdenum (Mo) and Tungsten (W) targets. The materials of added filters are Molybdenum and Rhodium (Rh) for 40 kVp Mo. primary spectrum, the amounts of photons over whole energy ranges are attenuated to 0.43 with 0.03 mm Mo filter and 0.38 with 0.06 mm Mo filter while the photons of energy ranged from 17 keV to 20 keV. The photons of low energy ranged below 17 keV are considerably attenuated. This effect brings out reducing the scattered radiation and dose to the patient, and enhancing subject contrast in the image. The results show that filtered spectra are not seriously affected by X-ray tube loadability. Because the energy range from 17 keV to 20 keV is directly transmitted although low and high energies are mainly filtered.

  • PDF

Monte Carlo Simulation of Transmission-Type X-ray Tube with Dual-Structured Target (이중 적층 구조 표적을 갖는 투과형 엑스선관의 몬테카를로 전산모사)

  • Kwon Su, Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • X-ray fluorescence analysis has been widely used in the field of science and industry because it gives information about elements and their concentrations without destruction of samples. To increase analysis accuracy of fluorescence generated by photons of the transmission-type X-ray tube for mixture and compound samples would be recommend to have strong energy near 10 keV and 20 keV simultaneously. Tungsten of 9.65 keV and molybdenum of 17.48 keV were considered as targets with dual deposition structure for obtaining two strong characteristic X-rays, and the transmission-type X-ray tube was analyzed using Geant4 Monte Carlo simulation. The W-Mo structure resulted in strong characteristic X-ray near 10 keV and 20 keV simultaneously. A structure with Mo-W multilayers of 5 ㎛ thick also gave optimal spectrum. Various material combination and thickness optimization for the dual-structured target can give X-ray spectrum with strong characteristic X-ray of specific energies.

Development of Dual Energy Radiation Detector (이중 에너지 방사선 검출기 개발)

  • Yeo, Hwa-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.5-11
    • /
    • 2010
  • In this paper, we are suggested development of dual-mode detector for dual-energy digital radiography. Design of dual-energy radiography module for commercial BIS (Baggage Inspection System) is used in the spectrum of the X-ray generator and detector for dual-mode features and radiological characteristics were analyzed. BIS suggestl on the image detector module being used to target X-ray tube to simulate X-ray spectrum and simulated spectrum to offer through the new radiographic characteristics of the detector modules were investigated. Using X-ray experiments with an increase in the thickness of the copper filter low energy detector (LED) and high-energy detector (HED) as the difference between the output signal increases. HED, especially in the size of the output signal decreases with increasing thickness of the copper filter was found.