• Title/Summary/Keyword: X-ray 회절

Search Result 1,475, Processing Time 0.028 seconds

Crystal Structure Analysis of $LiN(D_xH_{1-x}){_4}SO_4$ by X-ray and Neutron Diffraction (X-선과 중성자 회절을 이용한 강유전체 단결정 $LiN(D_xH_{1-x}){_4}SO_4$의 결정구조 연구)

  • Kim, Shin-Ae;Kim, Seong-Hoon;So, Ji-Yong;Lee, Jeong-Soo;Lee, Chana-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.351-356
    • /
    • 2007
  • The crystal structure of $Li(ND_4)SO_4$ was analyzed by X-ray and neutron diffraction methods. The crystal is a deuterated $Li(NH_4)SO_4$ and one of the ferroelectric materials with hydrogen atoms. The crystal is orthorhombic at room temperature, $P2_1nb$, with lattice parameters of $a=5.2773(5)\;{\AA},\;b=9.1244(23)\;{\AA},\;c=8.7719(11)\;{\AA}$ and Z=4. Neutron intensity data were collected on the Four-Circle diffractometer (FCD) at HANARO in Korea Atomic Energy Research Institute and X-ray date were given by Prof. Y. Noda of Tohoku University Japan. The structure was refined by full-matrix least-square to final R value of 0.070 for 1450 observed reflections by X-ray diffraction and to final R=0.049 for 745 observed reflections by neutron diffraction. With X-ray data we obtained only one hydrogen atomic position. However, not only all atomic positions of four hydrogen atoms at $NH_4$ but also the occupation factors of D and H were refined with neutron data. From this results we obtained the average chemical structure of this sample, $LiND_{3.05}H_{0.95}SO_4$.

Improvement of Measurement Accuracy by Correcting Systematic Error Associated with the X-ray Diffractometer (X-선 회절 장비의 기계적 오차 수정을 통한 분석 정확도 향상)

  • Choi, Dooho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.97-101
    • /
    • 2017
  • X-ray diffractometers are used to characterize material properties, such as the phase, texture, lattice constant and residual stress, based on the diffracted beams obtained from specimens. Quantitative analyses using X-rays are typically conducted by measuring the peak positions of the diffracted beams. However, the long-term use of the diffractomer, like any other machine, results in errors associated with the mechanical parts, which can deteriorate the accuracy of the quantitative analyses. In this study, the process of correcting systematic errors in the $2{\theta}$ range of $30{\sim}90^{\circ}$ is discussed, for which strain-free Si powders from NIST were used as the standard specimens. For the evaluation of the impact of such error correction, we conducted a quantitative analysis of the true lattice constant for tungsten thin films.

Correction Method of the Hydrogen Bond-Distance from X-ray Diffraction: Use of Neutron Data and Bond Valence Method (X-선 회절로 얻은 수소결합의 결합거리 보정 방법: 중성자 회절결과와 결합원자가 방법 이용)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • In this study we have derived the two correction methods of hydrogen bonding distance. In case of the intermediate or long hydrogen bond(>2.5 $\AA$), hydrogen bonding distances can be corrected by using the function d(O-H)=exp((2.173-d(O…O))/0.138)+0.958 obtained by least- squares fit to the data from the neutron diffraction at low temperatures. The valence-least-squares method is effective for the distance correction of very short hydrogen bond(<2.5 $\AA$). The distance correction is necessary for the long intermolecular hydrogen bond obtained from X-ray diffraction analysis.

Microscopic analysis of gas hydrates using X-ray diffraction method (X-ray diffraction을 이용한 가스 하이드레이트 미세구조 분석)

  • Lee, Jong-Won;Seol, Ji-Woong;Koh, Dong-Yeun;Lee, Huen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.178-181
    • /
    • 2008
  • 다양한 조성을 갖는 $CH_4+CO_2$ 혼합 기체 하이드레이트 샘플의 미세 구조 분석을 위하여 X-ray 회절 방법을 이용하였다. X-ray 회절 분석을 이용할 경우, 하이드레이트로의 전환율과 같은 정성적인 분석뿐 아니라 각 객체별 cage occupancy와 같은 정량적인 분석까지도 가능한 것으로 나타났다. 또한 이렇게 얻어진 X-ray 회절 분석 결과 및 refinement 결과를 $^{13}C$ 고체 NMR 방법과 교차 비교함으로써 측정 결과의 신뢰도를 높이려 하였다. 얻어진 분석 결과는 이후 가스 하이드레이트를 이용한 다양한 연구 분야에서 저장용량 평가 및 객체 점유율과 같은 미세 구조 정보를 얻는 데에 유용하게 사용될 것으로 전망된다.

  • PDF

Development and Evaluation of Parallel Beam Optic for X-ray (엑스선용 평행빔 광학소자 개발 및 평가)

  • Park, Byunghun;Cho, Hyungwook;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.477-481
    • /
    • 2012
  • An X-ray diffractometer which has various X-ray optics can give qualitative and quantitative information for a sample using a nondestructive analysis method. A parallel beam optic passes the parallel beam and removes divergent beam generated from an X-ray tube. The parallel beam optic used in the X-ray diffractometer was fabricated by wire cut and grading of stainless steel plates and was evaluated its performance using an X-ray imaging system. The measured parallelization of 6.6 mrad for the fabricated the parallel beam optic was a very close to the expected value of 6 mrad. An X-ray imaging technique for evaluating the parallel beam optics can estimate parallelization for each plate and can be used to other X-ray optics.

A Study of Mineral Quantification on Clay-Rich Rocks (점토질 암석의 광물정량 분석법 연구)

  • Byeong-Kook, Son;Gi-O, An
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.431-445
    • /
    • 2022
  • A quantitative phase analysis method of X-ray powder diffraction was studied to determine the mineral content of clay-rich rocks practically as well as effectively. For quantitative X-ray powder diffraction analysis of the clay-rich rocks, it is necessary to prepare whole-rock powder samples with a random orientation by side mounting method. In addition, for the identification of the clay minerals in the rock, it is required to prepare an oriented mount specimen with a clay particle size of 2 ㎛ or less, ethylene glycol treatment, and heat treatment. RIR (reference intensity ratio) and Rietveld method were used for the quantitative analysis of the clay-rich rocks. It was possible to obtain the total clay and the non-clay minerals contents from the whole-rock X-ray diffraction profiles using the RIR values. In addition, it was possible to calculate the relative content of each clay mineral from the oriented X-ray diffraction profiles of the clay particle size and assign it to the total clay. In the Rietveld method of whole-rock X-ray diffraction, effective quantitative values were obtained from the Rietveld diffraction patterns excluded the region of less than 10 degrees (2θ). Similar quantitative values were shown in not only the RIR but the Rietveld methods. Therefore, the analysis results indicate a possibility of a routine quantitative analysis of clay-rich rocks in the laboratory. However, quantitative analysis of clay minerals is still a challenge because there are numerous varieties of clay minerals with different chemical and structural characteristics.

Failure Analysis in Al 7075-T651 Alloy using X-ray Diffraction Technique (X-선 회절을 이용한 A1 7075-T651합금의 파손해소)

  • 오세욱;박수영;부명환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.103-113
    • /
    • 1993
  • X-ray diffraction analysis technique was used for the fatigue damage analysis and fatigue life prediction in Al 7075-T651 alloy. The tensile test, fatigue strength and fatigue crack propagation test with change of stress ratio were carried out. As a result, half-value breadth was increased with the plastic deformation in the specimen increasint at all test conditions. In particular, half-value breadth at the surface of the specimens fractured by fatigue was increased as stress intensity factor range and effective stress intensity factor range were increased. In addition, the good relationship between half-value breadty and diffraction pattern was shown.

  • PDF

Phase Analysis of Mechanically Alloyed $\sigma$-VFe Alloy Powders by Neutron and X-ray Diffraction (기계적 합금화한 $\sigma$-VFe합금의 중성자 및 X선 회절에 의한 상분석)

  • 이충효;조재문;이상진;심해섭;이창희
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.664-664
    • /
    • 2001
  • The mechanical alloying (MA) effect in $\sigma$-VFe intermetallic compound was studied by neutron and X-ray diffraction. The structure of MA $\sigma$-VFe powders were characterized by the X- ray diffraction with Cu- $K\alpha$ radiation and neutron diffraction with monochromatic neutrons of $1.835\AA$ using a high resolution powder diffractometer (HRPD). Mechanical alloying of $\sigma$-VFe compound gives rise to a dramatic structural change. After 60 hours of MA, the Fe-Fe distribution of the $\sigma$- phase VFe tetragonal structure with 30 atoms in a unit cell is found to change into that of the $\sigma$-(V,Fe) solid solution with bcc structure, which is a stable phase at elevated temperature above $1200^{\circ}C$. A comparison of X-ray diffraction data for the $\alpha$-phase has been also made with the corresponding neutron diffraction data. The (101) and (111) diffraction peaks of the $\sigma$-phase was clearly observed only in neutron diffraction pattern, which is believed to be a characteristic feature due to the chemical atomic ordering of $\sigma$- VFe phase.

Phase identification and degree of orientation measurements far fine-grained rock forming minerals using micro-area X-ray diffractometer -$Al_{2}SiO_{5}$ Polymorphs- (미소부 X-선 회절분석기를 이용한 미립조암광물의 상동정 및 배향도 측정 -$Al_{2}SiO_{5}$ 3상다형-)

  • 박찬수;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2000
  • Measurements of phase identification and degree of orientation for fine-grained (about 0.3 mm in diameter) minerals in rock samples performed by micro-area X-ray diffractometer.$Al_{2}SiO_{5}$ polymorphs (andalusite, kyanite and sillimanite) were chosen for the measurements and target minerals were existed on thin sections. Micro-area X-ray diffractometer is composed of 3(${\omega}\;{\chi}\;{\phi}$)-circle oscillating goniometer and position sensitive proportional counter (PSPC). $CuK_{\alpha}$ radiation was used as X-ray source and a pin hole ($50\;\mu\textrm{m}$$ in diameter) collimator was selected to focus radiation X-ray onto the target minerals. Phase identification and diffracted X-ray peak indexing were carried out by 3(${\omega}\;{\chi}\;{\phi}$)-circle oscillation measurement. Then, 2(${\omega}\;{\phi}$)-circle oscillation measurement was made for the purpose of searching the prevailing lattice plane of the minerals on thin section surface. Finally, for a selected peak by 2-circle oscillation measurement, X-ray pole figure measurement was executed for the purpose of check the degree of orientation of the single lattice direction and examine its pole distribution. As a result of 3-circle oscillation measurement, it was possible that phase identification among $Al_{2}SiO_{5}$ polymorphs. And from the results of 2-circle oscillation measurement and X-ray pole figure measurement, we recognized that poles of andalusite (122), kyanite (200) and sillimanite (310) lattice plances were well developed with direction normal to each mineral surface plane respectively. Therfore, the measurements used with micro-area X-ray diffractometer in this study will be a useful tool of phase identification and degree of orientation measurement for fine-grained rock forming minerals.

  • PDF

X-ray diffraction analysis of ZnS/ZnSe superlattices prepared by hot wall epitaxy (열벽적층성장에 의하여 제작된 ZnS/ZnSe 초격자의 X-선 회절분석)

  • Yong Dae Choi;A. Ishida;Fujiyasu, H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.377-385
    • /
    • 1996
  • ZnS/ZnSe superlattices were prepared on GaAs (100) substrates by hot wall epitaxy, an the structures were analyzed using x-ray diffraction. It is shown that the x-ray diffraction of the strained superlattice gives very useful information about the thickness of each layer, strain, interdiffusion, and the fluctuation of the superlattice period. Interdiffusion length of the S and Se is estimated to be less than $2\;{\AA}$.

  • PDF